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Preface

Since 2008 this mathematics lecture is offered for the master courses computer science,
mechatronics and electrical engineering. After a repetition of basic linear algebra, computer
algebra and calculus, we will treat numerical calculus, statistics and function approximation,
which are the most important mathematics basic topics for engineers.
We also provide an introduction to Computer Algebra. Mathematica, Matlab and Octave
are powerful tools for the Exercises. Event though we favour the open source tool Octave,
the student is free to choose either one of the three.
We are looking forward to work with interesting semesters with many motivated and eager
students who want to climb up the steep, high and fascinating mountain of engineering
mathematics together with us. I assure you that we will do our best to guide you through
the sometimes wild, rough and challenging nature of mathematics. I also assure you that all
your efforts and your endurance in working on the exercises during nights and weekends will
pay off as good marks and most importantly as a lot of fun.
Even though we repeat some undergraduate linear algebra and calculus, the failure rate
in the exams is very high, in particular among the foreign students. As a consequence, we
strongly recommend all our students to repeat undergraduate linear algebra such as operation
on matrices like solution of linear systems, singularity of matrices, inversion, eigenvalue
problems, row-, column- and nullspaces. You also should bring decent knowledge of one-
dimensional and multidimensional calculus, e.g. differentiation and integration in one and
many variables, convergence of sequences and series and finding extrema with constraints of
multivariate functions. And basic statistics is also required. To summarize: If you are not
able to solve problems (not only know the terms) in these fields, you have very
little chances to successfully finish this course.

History of this Course

The first version of this script was created in the winter semester 95/96. I had included in
this lecture only Numerics, although I wanted to cover initially Discrete Mathematics too,
which is very important for computer scientists. If you want to cover both in a lecture of
three semester week hours, it can happen only superficially. Therefore I decided to focus like
my colleagues on Numerics. Only then it is possible to impart profound knowledge.
From Numerical Calculus besides the basics, systems of linear equations, various interpola-
tion methods, function approximation, and the solution of nonlinear equations will be pre-
sented. An excursion into applied research follows, where e.g. in the field of benchmarking
of Microprocessors, mathematics (functional equations) is influencing directly the practice
of computer scientists.
In summer 1998 a chapter about Statistics was added, because of the weak coverage at
our University till then. In the winter semester 1999/2000, the layout and structure were
improved, as well some mistakes have been removed.
In the context of changes in the summer semester 2002 in the curriculum of Applied Computer
science, statistics was shifted, because of the general relevance for all students, into the lecture
Mathematics 2. Instead of Statistics, contents should be included, which are specifically
relevant for computer scientists. The generation and verification of random numbers is an
important topic, which is finally also covered.
Since summer 2008, this lecture is only offered to Master (Computer Science) students.
Therefore the chapter about random numbers was extended. Maybe other contents will be
included in the lecture. For some topics original literature will be handed out, then student



have to prepare the material by themselves.
To the winter semester 2010/11 the lecture has now been completely revised, restructured
and some important sections added such as radial basis functions, Gaussian processes and
statistics and probability. These changes become necessary with the step from Diploma
to Master. I want to thank Markus Schneider and Haitham Bou Ammar who helped me
improve the lecture.
To the winter semester 2010/11 the precourse will be integrated in the lecture in order to
give the students more time to work on the exercises. Thus, the volume of lecture grows
from 6 SWS to 8 SWS and we will now split it into two lectures of 4 SWS each.
In the winter semester 2012/13 we go back to a one semester schedule with 6 hours per week
for computer science and mechatronics students. Electrical engineering students will only go
for four hours, covering chapters one to six.

Wolfgang Ertel
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Chapter 1

Linear Algebra

1.1 Video Lectures

We use the excellent video lectures from G. Strang, the author of [1], available from: http://
ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010. In particular
we show the following lectures:

Lec # Topics
1 The geometry of linear equations (lecture 01)
2 Transposes, Permutations, Spaces Rn (lecture 05)
3 Column Space and Nullspace (lecture 06)
4 Solving Ax = 0: Pivot Variables, Special Solutions (lecture 07)
5 Independence, Basis, and Dimension (lecture 09)
6 The Four Fundamental Subspaces (lecture 10)
7 Orthogonal Vectors and Subspaces (lecture 14)
8 Properties of Determinants (lecture 18)
9 Determinant Formulas and Cofactors (lecture 19)
10 Cramer’s rule, inverse matrix, and volume (lecture 20)
11 Eigenvalues and Eigenvectors (lecture 21)
12 Symmetric Matrices and Positive Definiteness (lecture 25)
13 Linear Transformations and Their Matrices (lecture 30)

1.2 Exercises

Exercise 1.1 Solve the nonsingular triangular system

u+ v + w = b1 (1.1)

v + w = b2 (1.2)

w = b3 (1.3)

Show that your solution gives a combination of the columns that equals the column on the
right.

Exercise 1.2 Explain why the system

u+ v + w = 2 (1.4)

u+ 2v + 3w = 1 (1.5)

v + 2w = 0 (1.6)

http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010
http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010
http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures
http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures
http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures
http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures
http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures
http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures
http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures
http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures
http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures
http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures
http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures
http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures
http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures


4 1 Linear Algebra

is singular, by finding a combination of the three equations that adds up to 0 = 1. What
value should replace the last zero on the right side, to allow the equations to have solutions,
and what is one of the solutions?

Inverses and Transposes

Exercise 1.3 Which properties of a matrix A are preserved by its inverse (assuming A−1

exists)?

(1) A is triangular

(2) A is symmetric

(3) A is tridiagonal

(4) all entries are whole numbers

(5) all entries are fractions (including whole numbers like 3
1
)

Exercise 1.4
a) How many entries can be chosen independently, in a symmetric matrix of order n?

b) How many entries can be chosen independently, in a skew-symmetric matrix of order n?

Permutations and Elimination

Exercise 1.5
a) Find a square 3× 3 matrix P , that multiplied from left to any 3×m matrix A exchanges

rows 1 and 2.

b) Find a square n×n matrix P , that multiplied from left to any n×m matrix A exchanges
rows i and j.

Exercise 1.6 A permutation is a bijective mapping from a finite set onto itself. Applied
to vectors of length n, a permutation arbitrarily changes the order of the vector compo-
nents. The word “ANGSTBUDE” is a permutation of “BUNDESTAG”. An example of a
permutation on vectors of length 5 can be described by

(3, 2, 1, 5, 4).

This means component 3 moves to position 1, component 2 stays where it was, component
1 moves to position 3, component 5 moves to position 4 and component 4 moves to position
5.
a) Give a 5× 5 matrix P that implements this permutation.

b) How can we come from a permutation matrix to its inverse?

Exercise 1.7
a) Find a 3× 3 matrix E, that multiplied from left to any 3×m matrix A adds 5 times row

2 to row 1.

b) Describe a n×n matrix E, that multiplied from left to any n×m matrix A adds k times
row i to row j.

c) Based on the above answers, prove that the elimination process of a matrix can be realized
by successive multiplication with matrices from left.
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Column Spaces and NullSpaces

Exercise 1.8 Which of the following subsets of R3 are actually subspaces?

a) The plane of vectors with first component b1 = 0.

b) The plane of vectors b with b1 = 1.

c) The vectors b with b1b2 = 0 (this is the union of two subspaces, the plane b1 = 0 and the
plane b2 = 0).

d) The solitary vector b = (0, 0, 0).

e) All combinations of two given vectors x = (1, 1, 0) and y = (2, 0, 1).

f) The vectors (b1, b2, b3) that satisfy b3 − b2 + 3b1 = 0.

Exercise 1.9 Let P be the plane in 3-space with equation x + 2y + z = 6. What is the
equation of the plane P0 through the origin parallel to P? Are P and P0 subspaces of R3?

Exercise 1.10 Which descriptions are correct? The solutions x of

Ax =

[
1 1 1
1 0 2

]x1

x2

x3

 =

[
0
0

]
(1.7)

form a plane, line, point, subspace, nullspace of A, column space of A.

Ax = 0 and Pivot Variables

Exercise 1.11 For the matrix

A =

[
0 1 4 0
0 2 8 0

]
(1.8)

determine the echelon form U , the basic variables, the free variables, and the general solution
to Ax = 0. Then apply elimination to Ax = b, with components b1 and b2 on the right side;
find the conditions for Ax = b to be consistent (that is, to have a solution) and find the
general solution in the same form as Equation (3). What is the rank of A?

Exercise 1.12 Write the general solution to

[
1 2 2
2 4 5

]uv
w

 =

[
1
4

]
(1.9)

as the sum of a particular solution to Ax = b and the general solution to Ax = 0, as in (3).

Exercise 1.13 Find the value of c which makes it possible to solve

u+ v + 2w = 2 (1.10)

2u+ 3v − w = 5 (1.11)

3u+ 4v + w = c (1.12)
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Solving Ax = b

Exercise 1.14 Is it true that if v1, v2, v3 are linearly independent, that also the vectors
w1 = v1 + v2, w2 = v1 + v3, w3 = v2 + v3 are linearly independent? (Hint: Assume some
combination c1w1 + c2w2 + c3w3 = 0, and find which ci are possible.)

Exercise 1.15 Find a counterexample to the following statement: If v1, v2, v3, v4 is a basis
for the vector space R4, and if W is a subspace, then some subset of the v’s is a basis for
W .

Exercise 1.16 Suppose V is known to have dimension k. Prove that

a) any k independent vectors in V form a basis;

b) any k vectors that span V form a basis.

In other words, if the number of vectors is known to be right, either of the two properties of
a basis implies the other.

Exercise 1.17 Prove that if V and W are three-dimensional subspaces of R5, then V and
W must have a nonzero vector in common. Hint: Start with bases of the two subspaces,
making six vectors in all.

The Four Fundamental Subspaces

Exercise 1.18 Find the dimension and construct a basis for the four subspaces associated
with each of the matrices

A =

[
0 1 4 0
0 2 8 0

]
and U =

[
0 1 4 0
0 0 0 0

]
(1.13)

Exercise 1.19 If the product of two matrices is the zero matrix, AB = 0, show that the
column space of B is contained in the nullspace of A. (Also the row space of A is the left
nullspace of B, since each row of A multiplies B to give a zero row.)

Exercise 1.20 Explain why Ax = b is solvable if and only if rank A = rank A′, where A′

is formed from A by adding b as an extra column. Hint: The rank is the dimension of the
column space; when does adding an extra column leave the dimension unchanged?

Exercise 1.21 Suppose A is an m by n matrix of rank r. Under what conditions on those
numbers does
a) A have a two-sided inverse: AA−1 = A−1A = I?

b) Ax = b have infinitely many solutions for every b?

Exercise 1.22 If Ax = 0 has a nonzero solution, show that ATy = f fails to be solvable for
some right sides f . Construct an example of A and f .

Orthogonality

Exercise 1.23 In R3 find all vectors that are orthogonal to (1, 1, 1) and (1, -1, 0). Produce
from these vectors a mutually orthogonal system of unit vectors (an orthogonal system) in
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R3.

Exercise 1.24 Show that x− y is orthogonal to x+ y if and only if ‖x‖ = ‖y‖.
Exercise 1.25 Let P be the plane (not a subspace) in 3-space with equation x+2y−z = 6.
Find the equation of a plane P ′ parallel to P but going through the origin. Find also a
vector perpendicular to those planes. What matrix has the plane P ′ as its nullspace, and
what matrix hast P ′ as its row space?

Projections

Exercise 1.26 Suppose A is the 4 × 4 identity matrix with its last column removed. A
is 4 × 3. Project b = (1, 2, 3, 4) onto the column space of A. What shape is the projection
matrix P and what is P?

Determinants

Exercise 1.27 How are det(2A), det(−A), and det(A2) related to det A, when A is n by
n?

Exercise 1.28 Find the determinants of:

a) a rank one matrix

A =

1
4
2

 [2 −1 2
]

(1.14)

b) the upper triangular matrix

U =


4 4 8 8
0 1 2 2
0 0 2 6
0 0 0 2

 (1.15)

c) the lower triangular matrix UT ;

d) the inverse matrix U−1;

e) the “reverse-triangular” matrix that results from row exchanges,

M =


0 0 0 2
0 0 2 6
0 1 2 2
4 4 8 8

 (1.16)

Exercise 1.29 If every row of A adds to zero prove that det A = 0. If every row adds to 1
prove that det(A− I) = 0. Show by example that this does not imply det A = 1.
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Properties of Determinants

Exercise 1.30 Suppose An is the n by n tridiagonal matrix with 1’s everywhere on the
three diagonals:

A1 =
[
1
]
, A2 =

[
1 1
1 1

]
, A3 =

1 1 0
1 1 1
0 1 1

 , ... (1.17)

Let Dn be the determinant of An; we want to find it.

a) Expand in cofactors along the first row of An to show that Dn = Dn−1 −Dn−2.

b) Starting from D1 = 1 and D2 = 0 find D3, D4, ..., D8. By noticing how these numbers
cycle around (with what period?) find D1000.

Exercise 1.31 Explain why a 5 by 5 matrix with a 3 by 3 zero submatrix is sure to be a
singular (regardless of the 16 nonzeros marked by x’s):

the determinant of A =


x x x x x
x x x x x
0 0 0 x x
0 0 0 x x
0 0 0 x x

 is zero. (1.18)

Exercise 1.32 If A is m by n and B is n by m, show that

det =

[
0 A
−B I

]
= det AB.

(
Hint: Postmultiply by

[
I 0
B I

]
.

)
(1.19)

Do an example with m < n and an example with m > n. Why does the second example
have det AB = 0?

Cramers’ rule

Exercise 1.33 The determinant is a linear function of the column 1. It is zero if two
columns are equal. When b = Ax = x1a1 + x2a2 + x3a3 goes into the first column of A, then
the determinant of this matrix B1 is

|b a2 a3| = |x1a1 + x2a2 + x3a3 a2 a3| = x1|a1 a2 a3| = x1detA

a) What formula for x1 comes from left side = right side?

b) What steps lead to the middle equation?

Eigenvalues and Eigenvectors

Exercise 1.34 Suppose that λ is an eigenvalue of A, and x is its eigenvector: Ax = λx.

a) Show that this same x is an eigenvector of B = A− 7I, and find the eigenvalue.

b) Assuming λ 6= 0, show that x is also an eigenvector of A−1 and find the eigenvalue.
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Exercise 1.35 Show that the determinant equals the product of the eigenvalues by imagining
that the characteristic polynomial is factored into

det(A− λI) = (λ1 − λ)(λ2 − λ) · · · (λn − λ) (1.20)

and making a clever choice of λ.

Exercise 1.36 Show that the trace equals the sum of the eigenvalues, in two steps. First,
find the coefficient of (−λ)n−1 on the right side of (15). Next, look for all the terms in

det(A− λI) = det


a11 − λ a12 · · · a1n

a21 a22 − λ · · · a2n
...

...
...

an1 an2 · · · ann − λ

 (1.21)

which involve (−λ)n−1. Explain why they all come from the product down the main diagonal,
and find the coefficient of (−λ)n−1 on the left side of (15). Compare.

Diagonalization of Matrices

Exercise 1.37 Factor the following matrices into SΛS−1:

A =

[
1 1
1 1

]
and A =

[
2 1
0 0

]
. (1.22)

Exercise 1.38 Suppose A = uvT is a column times a row (a rank-one matrix).
a) By multiplying A times u show that u is an eigenvector. What is λ?

b) What are the other eigenvalues (and why)?

c) Compute trace(A) = vTu in two ways, from the sum on the diagonal and the sum of λ’s.

Exercise 1.39 If A is diagonalizable, show that the determinant of A = SΛS−1 is the
product of the eigenvalues.

Symmetric and Positive Semi-Definite Matrices

Exercise 1.40 If A = QΛQT is symmetric positive definite, then R = Q
√

ΛQT is its
symmetric positive definite square root. Why does R have real eigenvalues? Compute R and
verify R2 = A for

A =

[
2 1
1 2

]
and A =

[
10 −6
−6 10

]
. (1.23)

Exercise 1.41 If A is symmetric positive definite and C is nonsingular, prove that B =
CTAC is also symmetric positive definite.

Exercise 1.42 If A is positive definite and a11 is increased, prove from cofactors that the
determinant is increased. Show by example that this can fail if A is indefinite.
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Linear Transformation

Exercise 1.43 Suppose a linear mapping T transforms (1, 1) to (2, 2) and (2, 0) to (0, 0).
Find T (v):

(a) v = (2, 2) (b) v = (3, 1) (c) v = (−1, 1) (d) v = (a, b)

Exercise 1.44 Suppose T is reflection across the 45o line, and S is reflection across the y
axis. If v = (2, 1) then T (v) = (1, 2). Find S(T (v)) and T (S(v)). This shows that generally
ST 6= TS.

Exercise 1.45 Suppose we have two bases v1, ..., vn and w1, ..., wn for Rn. If a vector has
coefficients bi in one basis and ci in the other basis, what is the change of basis matrix in
b = Mc? Start from

b1v1 + ...+ bnvn = V b = c1w1 + ...+ cnwn = Wc. (1.24)

Your answer represents T (v) = v with input basis of v’s and output basis of w’s. Because of
different bases, the matrix is not I.



Chapter 2

Computer Algebra

Definition 2.1 Computer Algebra = Symbol Processing + Numerics + Graphics

Definition 2.2 Symbol Processing is calculating with symbols (variables, constants,
function symbols), as in Mathematics lectures.

Advantages of Symbol Processing:

� often considerably less computational effort compared to numerics.

� symbolic results (for further calculations), proofs in the strict manner possible.

Disadvantages of Symbol Processing:

� often there is no symbolic (closed form) solution, then Numerics will be applied,
e.g.:

– Calculation of Antiderivatives

– Solving Nonlinear Equations like: (ex = sinx)

Example 2.1

1. symbolic:

lim
x→∞

(
lnx

x+ 1

)′
=? (asymptotic behavior)

(
lnx

x+ 1

)′
=

1
x
(x+ 1)− lnx

(x+ 1)2
=

1

(x+ 1)x
− lnx

(x+ 1)2

x→∞ :

(
lnx

x+ 1

)′
→ 1

x2
− lnx

x2
→ lnx

x2
→ 0

2. numeric:
lim
x→∞

f ′(x) =?
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Example 2.2 Numerical solution of x2 = 5

x2 = 5, x =
5

x
, 2x = x+

5

x

x =
1

2

(
x+

5

x

)
iteration:

xn+1 =
1

2

(
xn +

5

xn

)
n xn
0 2 ← Startwert
1 2.25
2 2.236111
3 2.23606798
4 2.23606798

⇒
√

5 = 2.23606798± 10−8

(approximate solution)

2.1 Symbol Processing on the Computer

Example 2.3 Symbolic Computing with natural numbers:
Calculation rules, i.e. Axioms necessary. ⇒ Peano Axioms e.g.:

∀x, y, z : x+ y = y + x (2.1)

x+ 0 = x (2.2)

(x+ y) + z = x+ (y + z) (2.3)

Out of these rules, e.g. 0 + x = x can be deduced:

0 + x =︷︸︸︷
(2.1)

x+ 0 =︷︸︸︷
(2.2)

x

Implementation of symbol processing on the computer by ”Term Rewriting”.

Example 2.4 (Real Numbers) Chain Rule for Differentiation:

[f(g(x))]′ ⇒ f ′(g(x))g′(x)

sin(lnx+ 2)′ = cos(lnx+ 2)
1

x

Computer: (Pattern matching)

sin(Plus(lnx, 2))′ = cos(Plus(lnx, 2))Plus′(lnx, 2)

sin(Plus(lnx, 2))′ = cos(Plus(lnx, 2))Plus(ln′ x, 2′)
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sin(Plus(lnx, 2))′ = cos(Plus(lnx, 2))Plus

(
1

x
, 0

)
sin(Plus(lnx, 2))′ = cos(Plus(lnx, 2))

1

x

sin(Plus(lnx, 2))′ =
cos(lnx+ 2)

x

Effective systems:

� Mathematica (S. Wolfram & Co.)

� Maple (ETH Zurich + Univ. Waterloo, Kanada)

2.2 Short Introduction to Mathematica

Resources:

• Library: Mathematica Handbook (Wolfram)

• Mathematica Documentation Online: http://reference.wolfram.com

• http://www.hs-weingarten.de/~ertel/vorlesungen/mae/links.html

2.2.0.1 Some examples as jump start

In[1]:= 3 + 2^3

Out[1]= 11

In[2]:= Sqrt[10]

Out[2]= Sqrt[10]

In[3]:= N[Sqrt[10]]

Out[3]= 3.16228

In[4]:= N[Sqrt[10],60]

Out[4]= 3.1622776601683793319988935444327185337195551393252168268575

In[5]:= Integrate[x^2 Sin[x]^2, x]

3 2
4 x - 6 x Cos[2 x] + 3 Sin[2 x] - 6 x Sin[2 x]

Out[5]= ------------------------------------------------
24

In[7]:= D[%, x]

2 2
12 x - 12 x Cos[2 x]

Out[7]= ----------------------
24

http://reference.wolfram.com
http://www.hs-weingarten.de/~ertel/vorlesungen/mae/links.html
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In[8]:= Simplify[%]

2 2
Out[8]= x Sin[x]

In[9]:= Series[Exp[x], {x,0,6}]

2 3 4 5 6
x x x x x 7

Out[9]= 1 + x + -- + -- + -- + --- + --- + O[x]
2 6 24 120 720

In[10]:= Expand[(x + 2)^3 + ((x - 5)^2 (x + y)^2)^3]

2 3 6 7 8 9
Out[10]= 8 + 12 x + 6 x + x + 15625 x - 18750 x + 9375 x - 2500 x +

10 11 12 5 6 7
> 375 x - 30 x + x + 93750 x y - 112500 x y + 56250 x y -

8 9 10 11 4 2
> 15000 x y + 2250 x y - 180 x y + 6 x y + 234375 x y -

5 2 6 2 7 2 8 2 9 2
> 281250 x y + 140625 x y - 37500 x y + 5625 x y - 450 x y +

10 2 3 3 4 3 5 3 6 3
> 15 x y + 312500 x y - 375000 x y + 187500 x y - 50000 x y +

7 3 8 3 9 3 2 4 3 4
> 7500 x y - 600 x y + 20 x y + 234375 x y - 281250 x y +

4 4 5 4 6 4 7 4 8 4
> 140625 x y - 37500 x y + 5625 x y - 450 x y + 15 x y +

5 2 5 3 5 4 5 5 5
> 93750 x y - 112500 x y + 56250 x y - 15000 x y + 2250 x y -

6 5 7 5 6 6 2 6 3 6
> 180 x y + 6 x y + 15625 y - 18750 x y + 9375 x y - 2500 x y +

4 6 5 6 6 6
> 375 x y - 30 x y + x y

In[11]:= Factor[%]

2 3 4 2 3 2
Out[11]= (2 + x + 25 x - 10 x + x + 50 x y - 20 x y + 2 x y + 25 y -

2 2 2 2 3 4 5 6
> 10 x y + x y ) (4 + 4 x - 49 x - 5 x + 633 x - 501 x + 150 x -

7 8 2 3 4 5
> 20 x + x - 100 x y - 10 x y + 2516 x y - 2002 x y + 600 x y -

6 7 2 2 2 2 3 2
> 80 x y + 4 x y - 50 y - 5 x y + 3758 x y - 3001 x y +

4 2 5 2 6 2 3 2 3 3 3
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> 900 x y - 120 x y + 6 x y + 2500 x y - 2000 x y + 600 x y -

4 3 5 3 4 4 2 4 3 4 4 4
> 80 x y + 4 x y + 625 y - 500 x y + 150 x y - 20 x y + x y )

In[12]:= InputForm[%7]

Out[12]//InputForm= (12*x^2 - 12*x^2*Cos[2*x])/24

In[20]:= Plot[Sin[1/x], {x,0.01,Pi}]

Out[20]= -Graphics-

In[42]:= Plot3D[x^2 + y^2, {x,-1,1}, {y,0,1}]

Out[42]= -SurfaceGraphics-

In[43]:= f[x_,y_] := Sin[(x^2 + y^3)] / (x^2 + y^2)

In[44]:= f[2,3]

Sin[31]
Out[44]= -------

13

In[45]:= ContourPlot[x^2 + y^2, {x,-1,1}, {y,-1,1}]

Out[45]= -SurfaceGraphics-

In[46]:= Plot3D[f[x,y], {x,-Pi,Pi}, {y,-Pi,Pi}, PlotPoints -> 30,
PlotLabel -> "Sin[(x^2 + y^3)] / (x^2 + y^2)", PlotRange -> {-1,1}]

Out[46]= -SurfaceGraphics-

Sin[(x^2 + y^3)] / (x^2 + y^2)

-2
-1

0

1

2
-2

-1

0

1

2

-1

-0.5

0

0.5

1

-2
-1

0

1

2
-2 -1 0 1 2

-2

-1

0

1

2

Sin[(x^2 + y^3)] / (x^2 + y^2)

In[47]:= ContourPlot[f[x,y], {x,-2,2}, {y,-2,2}, PlotPoints -> 30,
ContourSmoothing -> True, ContourShading -> False,
PlotLabel -> "Sin[(x^2 + y^3)] / (x^2 + y^2)"]

Out[47]= -ContourGraphics-
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In[52]:= Table[x^2, {x, 1, 10}]

Out[52]= {1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

In[53]:= Table[{n, n^2}, {n, 2, 20}]

Out[53]= {{2, 4}, {3, 9}, {4, 16}, {5, 25}, {6, 36}, {7, 49}, {8, 64},
> {9, 81}, {10, 100}, {11, 121}, {12, 144}, {13, 169}, {14, 196},
> {15, 225}, {16, 256}, {17, 289}, {18, 324}, {19, 361}, {20, 400}}

In[54]:= Transpose[%]

Out[54]= {{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
> 20}, {4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256,
> 289, 324, 361, 400}}

In[60]:= ListPlot[Table[Random[]+Sin[x/10], {x,0,100}]]

Out[60]= -Graphics-

20 40 60 80 100

-0.5

0.5

1

1.5

In[61]:= x = Table[i, {i,1,6}]

Out[61]= {1, 2, 3, 4, 5, 6}

In[62]:= A = Table[i*j, {i,1,5}, {j,1,6}]

Out[62]= {{1, 2, 3, 4, 5, 6}, {2, 4, 6, 8, 10, 12}, {3, 6, 9, 12, 15, 18},
> {4, 8, 12, 16, 20, 24}, {5, 10, 15, 20, 25, 30}}

In[63]:= A.x

Out[63]= {91, 182, 273, 364, 455}

In[64]:= x.x

Out[64]= 91

In[71]:= B = A.Transpose[A]

Out[71]= {{91, 182, 273, 364, 455}, {182, 364, 546, 728, 910},
> {273, 546, 819, 1092, 1365}, {364, 728, 1092, 1456, 1820},
> {455, 910, 1365, 1820, 2275}}

In[72]:= B - IdentityMatrix[5]

Out[72]= {{90, 182, 273, 364, 455}, {182, 363, 546, 728, 910},
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> {273, 546, 818, 1092, 1365}, {364, 728, 1092, 1455, 1820},
> {455, 910, 1365, 1820, 2274}}

% last command
%n nth last command
?f help for function f
??f more help for f

f[x_,y_] := x^2 * Cos[y] define function f(x, y)
a = 5 assign a constant to variable a

f = x^2 * Cos[y] assign an expression to variable f
(f is only a placeholder for the expression, not a function!)

D[f[x,y],x] derivative of f with respect to x
Integrate[f[x,y],y] antiderivative of f with respect to x

Simplify[expr] simplifies an expression
Expand[expr] expand an expression

Solve[f[x]==g[x]] solves an equation
^C cancel

InputForm[Expr] converts into mathematica input form
TeXForm[Expr] converts into the LATEXform

FortranForm[Expr] converts into the Fortran form
CForm[Expr] converts into the C form

ReadList["daten.dat", {Number, Number}] reads 2-column table from file
Table[f[n], {n, n_min, n_max}] generates a list f(nmin), . . . , f(nmax)

Plot[f[x],{x,x_min,x_max}] generates a plot of f
ListPlot[Liste] plots a list

Plot3D[f[x,y],{x,x_min,x_max},{y,y_min,y_max}] generates a three-dim. plot of f
ContourPlot[f[x,y],{x,x_min,x_max},{y,y_min,y_max}] generates a contour plot of f

Display["Dateiname",%,"EPS"] write to the file in PostScript format

Table 2.2: Mathematica – some inportant commands

Example 2.5 (Calculation of Square Roots)

(*********** square root iterative **************)
sqrt[a_,genauigk_] := Module[{x, xn, delta, n},

For[{delta=9999999; n = 1; x=a}, delta > 10^(-accuracy), n++,
xn = x;
x = 1/2(x + a/x);
delta = Abs[x - xn];
Print["n = ", n, " x = ", N[x,2*accuracy], " delta = ", N[delta]];

];
N[x,genauigk]

]
sqrt::usage = "sqrt[a,n] computes the square root of a to n digits."

Table[sqrt[i,10], {i,1,20}]
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(*********** square root recursive **************)
x[n_,a_] := 1/2 (x[n-1,a] + a/x[n-1,a])
x[1,a_] := a

2.3 Gnuplot, a professional Plotting Software

Gnuplot is a powerful plotting programm with a command line interface and a batch inter-
face. Online documentation can be found on www.gnuplot.info.

On the command line we can input

plot [0:10] sin(x)

to obtain the graph

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

sin(x)

Almost arbitrary customization of plots is possible via the batch interface. A simple batch
file may contain the lines

set terminal postscript eps color enhanced 26

set label "{/Symbol a}=0.01, {/Symbol g}=5" at 0.5,2.2

set output "bucket3.eps"

plot [b=0.01:1] a=0.01, c= 5, (a-b-c)/(log(a) - log(b)) \

title "({/Symbol a}-{/Symbol b}-{/Symbol g})/(ln{/Symbol a} - ln{/Symbol b})"

producing a EPS file with the graph

 1

 2

 3

 4

 5

 6

 7

 8

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

t t
o

t

γ

α=0.01, γ=5

(α-β-γ)/(lnα - lnβ)

3-dimensional plotting is also possible, e.g. with the
commands

set isosamples 50

splot [-pi:pi][-pi:pi] sin((x**2 + y**3) / (x**2

+ y**2))

which produces the graph

-3 -2 -1  0  1  2  3 -3
-2

-1
 0

 1
 2

 3
-1

-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

sin((x**2 + y**3) / (x**2 + y**2))

www.gnuplot.info
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2.4 Short Introduction to MATLAB

Effective systems:

� MATLAB & SIMULINK (MathWorks)

2.4.0.2 Some examples as jump start

Out(1)=3+2^3

ans = 11

Out(2)=sqrt(10)

ans = 3.1623

Out(3)=vpa(sqrt(10),60)

= 3.16227766016837933199889354443271853371955513932521682685750

syms x
syms y
y=x^2sin(x)^2

2 2
x sin(x)

z=int(y,x)

2 2 3
x (- 1/2 cos(x) sin(x) + 1/2 x) - 1/2 x cos(x) + 1/4 cos(x) sin(x) + 1/4 x - 1/3 x

Der=diff(z,x)
2 2 2

2 x (- 1/2 cos(x) sin(x) + 1/2 x) + x (1/2 sin(x) - 1/2 cos(x) + 1/2)

2 2 2
- 1/4 cos(x) + x cos(x) sin(x) - 1/4 sin(x) + 1/4 - x

Simple=simplify(Der)
2 2
x sin(x)

Series=Taylor(exp(x),6,x,0)
2 3 4 5

1 + x + 1/2 x + 1/6 x + 1/24 x + 1/120 x

(x+2)^2+((x+5)^2(x+y)^2)^3
2 6 6

(x + 2) + (x - 5) (x + y)
Exp_Pol=expand(Pol)

2 6 5 4 2 3 3
4 + 4 x + x + 15625 x + 93750 x y + 234375 x y + 312500 x y

2 4 5 11 10 2 9 3
> + 234375 x y + 93750 x y + 6 x y + 15 x y + 20 x y

8 4 7 5 6 6 10 9 2 8 3
> + 15 x y + 6 x y + x y - 180 x y - 450 x y - 600 x y

7 4 6 5 6 12 11 10 9
> - 450 x y - 180 x y + 15625 y + x - 30 x + 375 x - 2500 x
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8 7 5 6 9 8 2 7 3
> + 9375 x - 18750 x - 30 x y+ 2250 x y + 5625 x y + 7500 x y

6 4 5 5 4 6 8 7 2
> + 5625 x y + 2250 x y + 375 x y - 15000 x y - 37500 x y

6 3 5 4 4 5 3 6 7
> - 50000 x y - 37500 x y - 15000 x y - 2500 x y + 56250 x y

6 2 5 3 4 4 3 5
> + 140625 x y + 187500 x y + 140625 x y + 56250 x y

2 6 6 5 2 4 3
> + 9375 x y - 112500 x y - 281250 x y - 375000 x y

3 4 2 5 6
> - 281250 x y - 112500 x y - 18750 x y

t=0:0.01:pi
plot(sin(1./t))
--Plot Mode---

[X,Y]=meshgrid(-1:0.01:1,-1:0.01:1)
Z=sin(X.^2+Y.^3)/(X.^2+Y.^2)
surf(X,Y,Z)

x=1:1:10
y(1:10)=x.^2

y =

[ 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

A_1=[1 2 4; 5 6 100; -10.1 23 56]

A_1 =
1.0000 2.0000 4.0000
5.0000 6.0000 100.0000

-10.1000 23.0000 56.0000

A_2=rand(3,4)
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A_2 =
0.2859 0.7157 0.4706 0.7490
0.5437 0.8390 0.5607 0.5039
0.9848 0.4333 0.2691 0.6468

A_2’=
0.3077 0.1387 0.4756
0.3625 0.7881 0.7803
0.6685 0.1335 0.0216
0.5598 0.3008 0.9394

A_1.*A_2=
3.1780 5.9925 5.0491 3.0975
43.5900 94.5714 92.6770 29.3559
26.3095 57.1630 58.7436 17.5258

[U L]=lu(A_1)

U =
-0.0990 0.2460 1.0000
-0.4950 1.0000 0
1.0000 0 0

L =
-10.1000 23.0000 56.0000

0 17.3861 127.7228
0 0 -21.8770

[Q R]=qr(A_1)

Q =
-0.0884 -0.2230 0.9708
-0.4419 -0.8647 -0.2388
0.8927 -0.4501 -0.0221

R =
-11.3142 17.7035 5.4445

0 -15.9871 -112.5668
0 0 -21.2384

b=[1;2;3]
x=A_1\b

b =
1
2
3

x =
0.3842
0.3481
-0.0201

A_3=[1 2 3; -1 0 5; 8 9 23]

A_3 =
1 2 3
-1 0 5
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8 9 23

Inverse=inv(A_3)

Inverse =
-0.8333 -0.3519 0.1852
1.1667 -0.0185 -0.1481
-0.1667 0.1296 0.0370

Example 2.6 (Calculation of Square Roots)

(*********** root[2] iterative **************)
function [b]=calculate_Sqrt(a,accuracy)
clc;
x=a;
delta=inf;
while delta>=10^-(accuracy)

Res(n)=x;
xn=x;
x=0.5*(x+a/x);
delta=abs(x-xn);

end
b=Res;

2.5 Short Introduction to GNU Octave

From the Octave homepage: GNU Octave is a high-level interpreted language, primarily
intended for numerical computations. It provides capabilities for the numerical solution of
linear and nonlinear problems, and for performing other numerical experiments. It also
provides extensive graphics capabilities for data visualization and manipulation. Octave is
normally used through its interactive command line interface, but it can also be used to
write non-interactive programs. The Octave language is quite similar to Matlab so that
most programs are easily portable.

Downloads, Docs, FAQ, etc.:

http://www.gnu.org/software/octave/

Nice Introduction/Overview:

http://math.jacobs-university.de/oliver/teaching/iub/resources/octave/octave-intro/octave-
intro.html

Plotting in Octave:

http://www.gnu.org/software/octave/doc/interpreter/Plotting.html
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// -> comments

BASICS
======

octave:47> 1 + 1
ans = 2
octave:48> x = 2 * 3
x = 6

// suppress output

octave:49> x = 2 * 3;
octave:50>

// help

octave:53> help sin
‘sin’ is a built-in function
-- Mapping Function: sin (X)

Compute the sine for each element of X in radians.
...

VECTORS AND MATRICES
====================

// define 2x2 matrix

octave:1> A = [1 2; 3 4]
A =

1 2
3 4

// define 3x3 matrix

octave:3> A = [1 2 3; 4 5 6; 7 8 9]
A =

1 2 3
4 5 6
7 8 9

// access single elements

octave:4> x = A(2,1)
x = 4

octave:17> A(3,3) = 17
A =

1 2 3
4 5 6
7 8 17

// extract submatrices

octave:8> A
A =

1 2 3
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4 5 6
7 8 17

octave:9> B = A(1:2,2:3)
B =

2 3
5 6

octave:36> b=A(1:3,2)
b =

2
5
8

// transpose

octave:25> A’
ans =

1 4 7
2 5 8
3 6 17

// determinant

octave:26> det(A)
ans = -24.000

// solve Ax = b

// inverse

octave:22> inv(A)
ans =
-1.54167 0.41667 0.12500
1.08333 0.16667 -0.25000
0.12500 -0.25000 0.12500

// define vector b

octave:27> b = [3 7 12]’
b =

3
7
12

// solution x

octave:29> x = inv(A) * b
x =
-0.20833
1.41667
0.12500

octave:30> A * x
ans =

3.0000
7.0000
12.0000
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// try A\b

// illegal operation

octave:31> x * b
error: operator *: nonconformant arguments (op1 is 3x1, op2 is 3x1)

// therefore allowed

octave:31> x’ * b
ans = 10.792

octave:32> x * b’
ans =

-0.62500 -1.45833 -2.50000
4.25000 9.91667 17.00000
0.37500 0.87500 1.50000

// elementwise operations

octave:11> a = [1 2 3]
a =

1 2 3

octave:10> b = [4 5 6]
b =

4 5 6

octave:12> a*b
error: operator *: nonconformant arguments (op1 is 1x3, op2 is 1x3)
octave:12> a.*b
ans =

4 10 18

octave:23> A = [1 2;3 4]
A =

1 2
3 4

octave:24> A^2
ans =

7 10
15 22

octave:25> A.^2
ans =

1 4
9 16

// create special vectors/matrices

octave:52> x = [0:1:5]
x =

0 1 2 3 4 5

octave:53> A = zeros(2)
A =

0 0
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0 0

octave:54> A = zeros(2,3)
A =

0 0 0
0 0 0

octave:55> A = ones(2,3)
A =

1 1 1
1 1 1

octave:56> A = eye(4)
A =
Diagonal Matrix

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

octave:57> B = A * 5
B =
Diagonal Matrix

5 0 0 0
0 5 0 0
0 0 5 0
0 0 0 5

// vector/matrix size

octave:43> size(A)
ans =

3 3

octave:44> size(b)
ans =

3 1

octave:45> size(b)(1)
ans = 3

PLOTTING (2D)
============

octave:35> x = [-2*pi:0.1:2*pi];
octave:36> y = sin(x);
octave:37> plot(x,y)
octave:38> z = cos(x);
octave:39> plot(x,z)

// two curves in one plot

octave:40> plot(x,y)
octave:41> hold on
octave:42> plot(x,z)

// reset plots
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octave:50> close all

// plot different styles

octave:76> plot(x,z,’r’)
octave:77> plot(x,z,’rx’)
octave:78> plot(x,z,’go’)

octave:89> close all

// manipulate plot

octave:90> hold on
octave:91> x = [-pi:0.01:pi];

// another linewidth

octave:92> plot(x,sin(x),’linewidth’,2)
octave:93> plot(x,cos(x),’r’,’linewidth’,2)

// define axes range and aspect ratio

octave:94> axis([-pi,pi,-1,1], ’equal’)
-> try ’square’ or ’normal’ instead of ’equal’ (help axis)

// legend

octave:95> legend(’sin’,’cos’)

// set parameters (gca = get current axis)

octave:99> set(gca,’keypos’, 2) // legend position (1-4)
octave:103> set(gca,’xgrid’,’on’) // show grid in x
octave:104> set(gca,’ygrid’,’on’) // show grid in y

// title/labels

octave:102> title(’OCTAVE DEMO PLOT’)
octave:100> xlabel(’unit circle’)
octave:101> ylabel(’trigon. functions’)

// store as png

octave:105> print -dpng ’demo_plot.png’

DEFINE FUNCTIONS
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================

sigmoid.m:
---
function S = sigmoid(X)
mn = size(X);
S = zeros(mn);
for i = 1:mn(1)
for j = 1:mn(2)
S(i,j) = 1 / (1 + e ^ -X(i,j));
end
end
end
---

easier:
---
function S = sigmoid(X)
S = 1 ./ (1 .+ e .^ (-X));
end
---

octave:1> sig + [TAB]
sigmoid sigmoid.m
octave:1> sigmoid(10)
ans = 0.99995
octave:2> sigmoid([1 10])
error: for x^A, A must be square // (if not yet implemented elementwise)
error: called from:
error: /home/richard/faculty/adv_math/octave/sigmoid.m at line 3, column 4
...
octave:2> sigmoid([1 10])
ans =

0.73106 0.99995

octave:3> x = [-10:0.01:10];
octave:5> plot(x,sigmoid(x),’linewidth’,3);

PLOTTING (3D)
============

// meshgrid

octave:54> [X,Y] = meshgrid([1:3],[1:3])
X =

1 2 3
1 2 3
1 2 3

Y =
1 1 1
2 2 2
3 3 3

// meshgrid with higher resolution (suppress output)

octave:15> [X,Y] = meshgrid([-4:0.2:4],[-4:0.2:4]);
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// function over x and y, remember that cos and sin
// operate on each element, result is matrix again

octave:20> Z = cos(X) + sin(1.5*Y);

// plot

octave:21> mesh(X,Y,Z)
octave:22> surf(X,Y,Z)

octave:44> contour(X,Y,Z)
octave:45> colorbar
octave:46> pcolor(X,Y,Z)

RANDOM NUMBERS / HISTOGRAMS
===========================

// equally distributed random numbers

octave:4> x=rand(1,5)
x =

0.71696 0.95553 0.17808 0.82110 0.25843

octave:5> x=rand(1,1000);
octave:6> hist(x);

// normally distributed random numbers

octave:5> x=randn(1,1000);
octave:6> hist(x);
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// try

octave:5> x=randn(1,10000);
octave:6> hist(x, 25);

2.6 Exercises

Mathematica

Exercise 2.1 Program the factorial function with Mathematica.
a) Write an iterative program that calculates the formula n! = n · (n− 1) · . . . · 1.

b) Write a recursive program that calculates the formula

n! =

{
n · (n− 1)! if n > 1

1 if n = 1

analogously to the root example in the script.

Exercise 2.2
a) Write a Mathematica program that multiplies two arbitrary matrices. Don’t forget to

check the dimensions of the two matrices before multiplying. The formula is

Cij =
n∑
k=1

AikBkj.

Try to use the functions Table, Sum and Length only.

b) Write a Mathematica program that computes the transpose of a matrix using the Table

function.

c) Write a Mathematica Program that computes the inverse of a matrix using the function
Linear Solve.

MATLAB

Exercise 2.3
a) For a finite geometic series we have the formula Σn

i=0q
i = 1−qn+1

1−q . Write a MATLAB
function that takes q and n as inputs and returns the sum.

b) For an infinite geometic series we have the formula Σ∞i=0q
i = 1

1−q if the series converges.
Write a MATLAB function that takes q as input and returns the sum. Your function
should produce an error if the series diverges.
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Exercise 2.4
a) Create a 5× 10 random Matrix A.

b) Compute the mean of each column and assign the results to elements of a vector called
avg.

c) Compute the standard deviation of each column and assign the results to the elements
of a vector called s.

Exercise 2.5 Given the row vectors x = [4, 1, 6, 10, −4, 12, 0.1] and y = [−1, 4, 3, 10, −9, 15, −2.1]
compute the following arrays,
a) aij = xiyj

b) bij = xi
yj

c) ci = xiyi, then add up the elements of c using two different programming approaches.

d) dij = xi
2+xi+yj

e) Arrange the elements of x and y in ascending order and calculate eij being the reciprocal
of the less xi and yj.

f) Reverse the order of elements in x and y in one command.

Exercise 2.6 Write a MATLAB function that calculates recursively the square root of a
number.

Analysis Repetition

Exercise 2.7 In a bucket with capacity v there is a poisonous liquid with volume αv. The
bucket has to be cleaned by repeatedly diluting the liquid with a fixed amount (β − α)v
(0 < β < 1 − α) of water and then emptying the bucket. After emptying, the bucket
always keeps αv of its liquid. Cleaning stops when the concentration cn of the poison after
n iterations is reduced from 1 to cn < ε > 0.
a) Assume α = 0.01, β = 1 and ε = 10−9. Compute the number of cleaning-iterations.

b) Compute the total volume of water required for cleaning.

c) Can the total volume be reduced by reducing β? If so, determine the optimal β.

d) Give a formula for the time required for cleaning the bucket.

e) How can the time for cleaning the bucket be minimized?



Chapter 3

Calculus – Selected Topics

3.1 Sequences and Convergence

Definition 3.1 A function N→ R, n 7→ an is called sequence.
Notation: (an)n∈N or (a1, a2, a3, ...)

Example 3.1
(1, 2, 3, 4, ...) = (n)n∈N
(1, 1

2
, 1

3
, 1

4
, ...) = ( 1

n
)n∈N

(1, 2, 4, 8, 16, ...) = (2n−1)n∈N

Consider the following sequences:

1. 1,2,3,5,7,11,13,17,19,23,...

2. 1,3,6,10,15,21,28,36,45,55,66,..

3. 1,1,2,3,5,8,13,21,34,55,89,...

4. 8,9,1,-8,-10,-3,6,9,4,-6,-10

5. 1,2,3,4,6,7,9,10,11,13,14,15,16,17,18,19,21,22,23,24,26,27,29,30,31,32,33,34,35,36, 37,..

6. 1,3,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,31,33, 35, 37,38,39,41,43,..

Find the next 5 elements of each sequence. If you do not get ahead or want to solve other
riddles additionaly, have a look at http://www.oeis.org.
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Definition 3.2 (an)n∈N is called bounded, if there is A,B ∈ R with ∀n A ≤ an ≤ B

(an)n∈N is called monotonically increasing/decreasing, iff ∀n an+1 ≥ an (an+1 ≤
an)

Definition 3.3 A sequence of real numbers (an)n∈N converges to a ∈ R, iff:

∀ε > 0 ∃N(ε) ∈ N, so that |an − a| < ε ∀n ≥ N(ε)

Notation: lim
n→∞

an = a

a
{ε

ε{

n
εN( )

a
n

Definition 3.4 A sequence is called divergent if it is not convergent.

Example 3.2

1.) (1, 1
2
, 1

3
, ...) converges to 0 (zero sequence)

2.) (1, 1, 1, ...) converges to 1
3.) (1,−1, 1,−1, ...) is divergent
4.) (1, 2, 3, ...) is divergent

Theorem 3.1 Every convergent sequence is bounded.

Proof: for ε = 1 : N(1), first N(1) terms bounded, the rest bounded through a±N(1).
Note: Not every bounded sequence does converge! (see exercise 3), but:

Theorem 3.2 Every bounded monotonic sequence is convergent

B

 A
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3.1.1 Sequences and Limits

Let (an), (bn) two convergent sequences with: lim
n→∞

an = a, lim
n→∞

bn = b , then it holds:

lim
n→∞

(an ± bn) = lim
n→∞

an ± lim
n→∞

bn

= a± b
lim
n→∞

(c · an) = c · lim
n→∞

an

= c · a
lim
n→∞

(an · bn) = a · b

lim
n→∞

(an
bn

)
=

a

b
if bn, b 6= 0

Example 3.3 Show that the sequence an =
(

1 +
1

n

)n
, n ∈ N converges:

n 1 2 3 4 10 100 1000 10000
an 2 2.25 2.37 2.44 2.59 2.705 2.717 2.7181

The numbers (only) suggest that the sequence converges.

1. Boundedness: ∀n an > 0 and

an =
(

1 +
1

n

)n
= 1 + n · 1

n
+
n(n− 1)

2
· 1

n2
+
n(n− 1)(n− 2)

2 · 3 · 1

n3
+ . . .+

1

nn

= 1 + 1 +
1

2

(
1− 1

n

)
+

1

2 · 3
(

1− 1

n

)(
1− 2

n

)
+ . . .+

1

n!

(
1− 1

n

)(
1− 2

n

)
· . . .

. . . ·
(

1− n− 1

n

)
< 1 + 1 +

1

2
+

1

2 · 3 + . . .+
1

n!

< 1 + 1 +
1

2
+

1

4
+

1

8
+ . . .+

1

2n

< 1 + 1 +
1

2
+

1

4
+

1

8
+ . . .

= 1 +
1

1− 1
2

= 3

2. Monotony: Replacing n by n + 1 in (1.) gives an < an+1, since in line 3 most
summands in an+1 are bigger!

The limit of this sequence is the Euler number:

e := lim
n→∞

(
1 +

1

n

)n
= 2.718281828 . . .

3.2 Series
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Definition 3.5 Let (an)n∈N be a sequence of real numbers. The sequence

sn :=
n∑
k=0

ak , n ∈ N

of the partial sums is called (infinite) series and is defined by
∞∑
k=0

ak.

If (sn)n∈N converges, we define

∞∑
k=0

ak := lim
n→∞

n∑
k=0

ak.

Example 3.4
n 0 1 2 3 4 5 6 7 8 9 10 . . .
Sequence an 0 1 2 3 4 5 6 7 8 9 10 . . .

Series Sn =
n∑
k=0

ak 0 1 3 6 10 15 21 28 36 45 55 . . .

n 0 1 2 3 4 5 6 7 8 9 10

Sequence an 1
1

2

1

4

1

8

1

16

1

32

1

64

1

128

1

256

1

518

1

1024

Series Sn 1
3

2

7

4

15

8

31

16

63

32

127

64

255

128

511

256

1023

512

2047

1024

(decimal) 1 1.5 1.75 1.875 1.938 1.969 1.984 1.992 1.996 1.998 1.999

3.2.1 Convergence criteria for series

Theorem 3.3 (Cauchy) The series
∞∑
n=0

an converges iff

∀ε > 0 ∃N ∈ N

∣∣∣∣∣
n∑

k=m

ak

∣∣∣∣∣ < ε

for all n ≥ m ≥ N

Proof: Let sp :=
p∑

k=0

ak. Then sn − sm−1 =
n∑

k=m

ak. Therefore (sn)n∈N Cauchy sequence

⇔ (sn) is convergent.

Theorem 3.4 A series with ak > 0 for k ≥ 1 converges iff the sequence of partial sums
is bounded.
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Proof: as exercise

Theorem 3.5 (Comparison test)

Let
∞∑
n=0

cn a convergent series with ∀n cn ≥ 0 and (an)n∈N a sequence with |an| ≤ cn ∀n ∈

N. Then
∞∑
n=0

an converges.

Theorem 3.6 (Ratio test)

Let
∞∑
n=0

an a series with an 6= 0 for all n ≥ n0. A real number q with 0 < q < 1 exists, that∣∣∣∣an+1

an

∣∣∣∣ ≤ q for all n ≥ n0. Then the series
∞∑
n=0

an converges.

If, from an index n0,
∣∣∣an+1

an

∣∣∣ ≥ 1, then the series is divergent.

Proof idea (f. 1. Part): Show that
∞∑
n=0

|a0|qn is a majorant.

Example 3.5
∞∑
n=0

n2

2n
converges.

Proof: ∣∣∣∣an+1

an

∣∣∣∣ =
(n+ 1)22n

2n+1n2
=

1

2
(1 +

1

n
)2 ≤
↑

for n ≥ 3

1

2
(1 +

1

3
)2 =

8

9
< 1.

3.2.2 Power series

Theorem 3.7 and defintion For each x ∈ R the power series

exp(x) :=
∞∑
n=0

xn

n!

is convergent.

Proof: The ratio test gives∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣ xn+1n!

(n+ 1)!xn

∣∣∣∣ =
|x|
n+ 1

≤ 1

2
for n ≥ 2|x| − 1

Definition 3.6 Euler’s number e := exp(1) =
∞∑
n=0

1

n!

The function exp : R→ R+ x 7→ exp(x) is called exponential function.
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Theorem 3.8 (Remainder)

exp(x) =
N∑
n=0

xn

n!
+RN(x) N − th approximation

with |RN(x)| ≤ 2
|x|N+1

(N + 1)!
for |x| ≤ 1 +

N

2
or N ≥ 2(|x| − 1)

3.2.2.1 Practical computation of exp(x) :

N∑
n=0

xn

n!
= 1 + x+

x2

2
+ . . .+

xN−1

(N − 1)!
+
xN

N !

= 1 + x(1 +
x

2
(1 + . . .+

x

N − 2
(1 +

x

N − 1
(1 +

x

N
)) . . .))

e = 1 + 1 +
1

2
(. . .+

1

N − 2
(1 +

1

N − 1
(1 +

1

N
)) . . .) +RN with RN ≤ 2

(N + 1)!

For N = 15: |R15| ≤ 2
16!

< 10−13

e = 2.718281828459± 2 · 10−12 (rounding error 5 times 10−13!)

Theorem 3.9 The functional equation of the exponential function
∀x, y ∈ R it holds: exp(x+ y) = exp(x) · exp(y).

Proof: The proof of this theorem is via the series representation (definition 3.6). It is not
easy, because it requires another theorem about the product of series (not covered here).
Conclusions:

a) ∀x ∈ R exp(−x) = (exp(x))−1 =
1

exp(x)
b) ∀x ∈ R exp(x) > 0
c) ∀n ∈ Z exp(n) = en

Notation: Also for real numbers x ∈ R : ex := exp(x)
Proof:

a) exp(x) · exp(−x) = exp(x− x) = exp(0) = 1 ⇒ exp(−x) =
1

exp(x)
x 6= 0

b) 1.Case x ≥ 0 : exp(x) = 1 + x+
x2

2
+ . . . ≥ 1 > 0

2.Case x < 0 : −x < 0 ⇒ exp(−x) > 0 ⇒ exp(x) =
1

exp(−x)
> 0.

c) Induction exp (1) = e exp (n) = exp (n− 1 + 1) = exp (n− 1) · e = en−1 · e
Note: for large x := n+ h n ∈ N exp(x) = exp(n+ h) = en · exp(h)
(for large x faster then series expansion)

3.3 Continuity

Functions are characterized among others in terms of ”‘smoothness”’. The weakest form of
smoothness is the continuity.
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Definition 3.7 Let D ⊂ R, f : D → R a function and a ∈ R. We write

lim
x→a

f(x) = C,

if for each sequence (xn)n∈N, (xn) ∈ D with lim
n→∞

xn = a holds:

lim
n→∞

f(xn) = C.

.

f(x)

x

C

a

f(x

f(x

x x x

2

1

1 2 3
......

)

)

...

Definition 3.8 For x ∈ R the expression bxc denotes the unique integer number n with
n ≤ x < n+ 1.

Example 3.6 1. lim
x→0

exp(x) = 1

2. lim
x→1
bxc does not exist!

left-side limit 6= right-side limit

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

.

4

3

2

1

1 32 4

3. Let f : R→ R polynomial of the form f(x) = xk + a1x
k−1 + . . .+ ak−1x+ ak, k ≥ 1.

Then it holds: lim
x→∞

f(x) =∞
and lim

x→−∞
f(x) =

{ ∞ , if k even
−∞ , if k odd

Proof: for x 6= 0

f(x) = xk(1 +
a1

x
+
a2

x2
+ . . .+

ak
xk︸ ︷︷ ︸

=:g(x)

)
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since lim
x→∞

g(x) = 0, it follows lim
x→∞

f(x) = lim
x→∞

xk =∞.

Application: The asymptotic behavior for x → ∞ of polynomials is always determinated
by the highest power in x.

Definition 3.9 (Continuity)
Let f : D → R a function and a ∈ D. The function f is called continuous at point a, if

lim
x→a

f(x) = f(a).

f is called continuous in D, if f is continuous at every point of D.

f(x)

x

f(x

f(x

x x x

2

1

1 2 3
......

)

)

a

.

.

.

f(a )

For the depicted function it holds
lim
x→∞

f(x) 6= a. f is discontinuous at the

point a.

Example 3.7 1.) f : x 7→ c (constant function) is continuous on whole R.
2.) The exponential function is continuous on whole R.
3.) The identity function f : x 7→ x is continuous on whole R.

Theorem 3.10 Let f, g : D → R functions, that are at a ∈ D continuous and let r ∈ R.

Then the functions f + g, rf, f · g at point a are continuous, too. If g(a) 6= 0, then
f

g
is

continuous at a.

Proof: Let (xn) a sequence with (xn) ∈ D and lim
n→∞

xn = a.

to show : lim
n→∞

(f + g)(xn) = (f + g)(a)

lim
n→∞

(rf)(xn) = (rf)(a)

lim
n→∞

(f · g)(xn) = (f · g)(a)

lim
n→∞

(
f

g
)(xn) = (f

g
)(a)


holds because of rules for sequences.

Definition 3.10 Let A,B,C subsets of R with the functions f : A→ B and g : B → C.
Then g ◦ f : A→ C, x 7→ g(f(x)) is called the composition of f and g.

Example 3.8

1.) f ◦ g(x) = f(g(x))

2.)
√ ◦ sin(x) =

√
sin(x)

3.) sin ◦√ (x) = sin(
√
x)
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Theorem 3.11 Let f : A→ B continuous at a ∈ A and g : A→ C continuous at y = f(a).
Then the composition g ◦ f is continuous in a, too.

Proof: to show: lim
n→∞

xn = a ⇒
↑

continuity of f

lim
n→∞

f(xn) = f(a) ⇒
↑

continuity of g

lim
n→∞

g(f(xn)) = g(f(a)).

Example 3.9
x

x2 + a
is continuous on whole R, because f(x) = x2, g(x) = f(x) + a and

h(x) =
x

g(x)
are continuous.

Theorem 3.12 (ε δ Definition of Continuity)
A function f : D → R is continuous at x0 ∈ D iff:

∀ε > 0 ∃δ > 0 ∀x ∈ D (|x− x0| < δ ⇒ |f(x)− f(x0)| < ε)

f(x)

x

f(x )
ε

ε

{ }

δ   δx0

0

f(x)

x
x 0

ε 
1

2

1

2

.
= 

Theorem 3.13 Let f : [a, b] → R continuous and strictly increasing (or decreasing) and
A := f(a), B := f(b). Then the inverse function f−1 : [A,B] → R (bzw. [B,A] → R) is
continuous and strictly increasing (or decreasing), too.

Example 3.10 (Roots)
Let k ∈ N, k ≥ 2. The function f : R+ → R+, x 7→ xk is continuous and strictly increasing.
The inverse function f−1 : R+ → R+, x 7→ k

√
x is continuous and strictly increasing.
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Theorem 3.14 (Intermediate Value)
Let f : [a, b]→ R continuous with f(a) < 0 and f(b) > 0. Then there exists a p ∈ [a, b] with
f(p) = 0.

 b  baa x x

f(x)f(x) f discontinuous, no zero!, 

Note: if f(a) > 0, f(b) < 0 take −f instead of f and apply the intermediate value theorem.

Example 3.11 D = Q : x 7→ x2 − 2 = f(x) f(1) = −1, f(2) = 2 there is a p ∈ D with
f(p) = 0.

Corollar 3.3.1 Is f : [a, b] → R continuous and
−
y is any number between f(a) and f(b),

then there is at least one
−
x∈ [a, b] with f(

−
x) =

−
y.

x
 ba

f(b)

f(a)

y

 x 

Note: Now it is clear that every continuous function on [a, b] assumes every value in the
interval [f(a), f(b)].

3.3.1 Discontinuity

Definition 3.11 We write lim
x↘a

f(x) = c (lim
x↗a

f(x) = c), if for every sequence (xn) with

xn > a (xn < a) and lim
x→∞

xn = a holds: lim
n→∞

f(xn) = c.

lim
x↘a

f(x) (lim
x↗a

f(x)) is called right-side (left-side) limit of f at x = a.

Theorem 3.15 A function is continuous at point a, if the right-side and left-side limit are
equal.

Lemma 3.1 A function is discontinuous at the point a, if limit lim
x→a

f(x) does not exist.
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Conclusion: A function is discontinuous at the point a, if there are two sequences (xn), (zn)
with limxn = lim zn = a and lim f(xn) 6= lim f(zn).

Example 3.12 1. Step: lim
x↗a

f(x) = c1 6= c2 = lim
x↘a

f(x)

f(x) = x− n for n− 1
2
≤ x < n+ 1

2
n ∈ Z

x1 2-1-2

1

1

1

2
-

. . . . .

f(x)

2. Pole: lim
x→x0

f(x) =∞
or lim

x→x0

f(x) = −∞

Example: f(x) =
1

x2

3. Oscillation:

The function f(x) = sin
1

x
, x 6= 0 is discontinuous at x = 0

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

-1 -0.5  0  0.5  1

sin(1/x)

Proof: let xn =
1

π
2

+ n · 2π n ∈ N

⇒ sin
1

xn
= 1 ⇒ lim

n→∞
xn = 0, lim

n→∞
sin

1

xn
= 1

but: let zn =
1

n · π , n ∈ N

⇒ lim
n→∞

zn = 0, lim
n→∞

sin
1

zn
= 0

→ Limit is not unique, therefore sin 1
x

is discontinuous.

Note: Is a function f continuous ∀x ∈ [a, b], then it holds for any convergent sequence (xn)
:

lim
n→∞

f(xn) = f( lim
n→∞

xn).

Proof: as exercise
Conclusion: Continuity of f at x0 = lim

n→∞
xn means that f and lim

n→∞
can be exchanged.

3.4 Taylor–Series

The Taylor series is a representation of a function as an infinite sum of powers of x.
Goals:
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1. Simple representation of functions as polynomials, i.e.:

f(x) ≈ a0 + a1x+ a2x
2 + a3x

3 + · · ·+ anx
n

2. Approximation of functions in the neighborhood of a point x0.

Ansatz:

P (x) = a0 + a1(x− x0) + a2(x− x0)2 + a3(x− x0)3 + · · ·+ an(x− x0)n

coefficients a0, · · · , an are sought such that

f(x) = P (x) +Rn(x)

with a remainder term Rn(x) and limn→∞Rn(x) = 0, ideally for all x.
We require for some point x0 that
f(x0) = P (x0), f ′(x0) = P ′(x0), · · · , f (n)(x0) = P (n)(x0)

Computation of Coefficients:

P (x0) = a0, P ′(x0) = a1, P ′′(x0) = 2a2, · · · , P (k)(x0) = k!ak, · · ·

⇒ f (k)(x0) = k!ak ⇒ ak =
f (k)(x0)

k!
Result:

f(x) = f(x0) +
f ′(x0)

1!
(x− x0) +

f ′′(x0)

2!
(x− x0)2 + · · ·+ f (n)(x0)

n!
(x− x0)n︸ ︷︷ ︸

P (x)

+Rn(x)

Example 3.13 Expansion of f(x) = ex in the point x0 = 0:

f(x0) = f(0) = 1, f ′(0) = 1, f ′′(0) = 1, · · · , f (n) = 1

⇒ ex = 1 + x+
x2

2!
+
x3

3!
+ · · ·+ xn

n!
+Rn(x)

ex →
-2 -1 1 2

1

2

3

4

5

6
← 1 + x+ x2

2
+ x3

6

← 1 + x+ x2

2

← 1 + x

← 1
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Theorem 3.16 (Taylor Formula) Let I ⊂ R be an interval and f : I → R a (n+1)–times
continuously differentiable function. Then for x ∈ I, x0 ∈ I we have

f(x) = f(x0) +
f ′(x0)

1!
(x− x0) +

f ′′(x0)

2!
(x− x0)2 + · · ·+ f (n)(x0)

n!
(x− x0)n +Rn(x)

with

Rn(x) =
1

n!

∫ x

x0

(x− t)nf (n+1)(t)dt

Theorem 3.17 (Lagrangian form of the remainder term) Let f : I → R (n + 1)–
times continuously differentiable and x0, x ∈ I . Then there is a z between x0 and x such
that

Rn(x) =
f (n+1)(z)

(n+ 1)!
(x− x0)n+1.

Example 3.14 f(x) = ex Theorems 3.16 and 3.17 yield

ex =
n∑
k=0

xk

k!
+

ez

(n+ 1)!
xn+1︸ ︷︷ ︸

=Rn(x)

for |z| < |x|

Convergence:

|Rn(x)| ≤ e|x| |x|n+1

(n+ 1)!
=: bn∣∣∣∣bn+1

bn

∣∣∣∣ =
|x|
n+ 2

→ 0 for n→∞

the ratio test implies convergence of
∞∑
n=0

bn.

⇒ lim
n→∞

bn = 0 ⇒ lim
n→∞

Rn(x) = 0 for all x ∈ R

Thus the Taylor series for ex converges to f(x) for all x ∈ R!

Example 3.15 Evaluation of the integral∫ 1

0

√
1 + x3 dx.

As the function f(x) =
√

1 + x3 has no simple antiderivative (primitive function), it can not
be symbolically integrated. We compute an approximation for the integral by integrating
the third order Taylor polynomial

√
1 + x3 = (1 + x3)1/2 ≈ 1 +

x3

2

and substituting this into the integral∫ 1

0

√
1 + x3 dx ≈

∫ 1

0

1 +
x3

2
dx =

[
x+

x4

8

]1

0

=
9

8
= 1.125

The exact value of the integral is about 1.11145, i.e. our approximation error is about 1%.
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Definition 3.12 The series Tf (x) =
∞∑
k=0

f (k)(x0)

k!
(x−x0)k is called Taylor series of f with

expansion point (point of approximation) x0.

Note:

1. For x = x0 every Taylor series converges.

2. But for x 6= x0 not all Taylor series converge!

3. A Taylor series converges for exactly these x ∈ I to f(x) for which the remainder term
from theorem 3.16 (3.17) converges to zero.

4. Even if the Taylor series of f converges, it does not necessarily converge to f . (→
example in the exercises.)

Example 3.16 (Logarithm series) For 0 < x ≤ 2:

ln(x) = (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− (x− 1)4

4
± · · ·

Proof:

ln′(x) =
1

x
, ln′′(x) = − 1

x2
, ln′′′(x) =

2

x3
, ln(4)(x) = − 6

x4
, ln(n)(x) = (−1)n−1 (n− 1)!

xn

Induction:

ln(n+1)(x) =
(
ln(x)(n)

)′
=

(
(−1)(n−1) (n− 1)!

xn

)′
= (−1)n

n!

xn+1

Expansion at x0 = 1

Tln,1(x) =
∞∑
k=0

ln(k)(1)

k!
(x− 1)k = (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− (x− 1)4

4
± · · ·

This series converges only for 0 < x ≤ 2 (without proof).

Definition 3.13 If a Taylor series converges for all x in an interval I, we call I the
convergence area.
Is I = [x0 − r, x0 + r] or I = (x0 − r, x0 + r), r is the convergence radius of the Taylor
series.

Example 3.17 Relativistic mass increase:
Einstein: total energy: E = mc2 kinetic energy: Ekin = (m−m0)c2

m(v) =
m0√

1− (v
c

)2
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to be shown: for v � c we have Ekin ≈ 1
2
m0v

2

Ekin = (m−m0)c2 =

 1√
1− (v

c

)2
− 1

m0c
2

1√
1− x = (1− x)−

1
2 = 1 +

1

2
x+

(−1
2

) (−3
2

)
2!

x2 + · · ·

= 1 +
1

2
x+

3

8
x2 + · · ·

for x� 1:
1√

1− x ≈ 1 +
1

2
x

⇒ Ekin ≈
(

1 +
1

2

v2

c2
− 1

)
m0c

2 =
1

2
m0v

2 +
3

8
m0

v4

c2
+ . . .

3.5 Differential Calculus in many Variables

f : Rn → R
(x1, x2, · · · , xn) 7→ y = f(x1, x2, · · · , xn)

or
x 7→ y = f(x )

3.5.1 The Vector Space Rn

In order to “compare” vectors, we use a norm:

Definition 3.14 Any mapping ‖ ‖ : Rn → R,x 7→ ‖x‖ is called Norm if and only if

1. ‖x‖ = 0 iff x = 0

2. ‖λx‖ = |λ| ‖x‖ ∀λ ∈ R,x ∈ Rn

3. ‖x + y‖ ≤ ‖x‖+ ‖y‖ ∀x, y ∈ Rn triangle inequation

the particular norm we will use here is the

Definition 3.15 (Euklidian Norm)
The function | | : Rn → R+ ∪ {0},x 7→

√
x2

1 + · · ·+ x2
n is the Euklidian Norm of the

vector x .

Lemma: Die Euklidian norm is a norm.

Theorem 3.18 For x ∈ Rn we have x 2 = xx = |x |2

Proof as exercise.

Note: The scalar product in Rn induces the Euklidian norm.
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3.5.2 Sequences and Series in Rn

analogous to Sequences and Series in R!

Definition 3.16 A mapping N → Rn, n 7→ an is called sequence.
Notation: (an)n∈N

Example 3.18 1
1
1

 ,

 2
1
2
1
2

 ,

 3
1
3
1
4

 ,

 4
1
4
1
8

 ,

 5
1
5
1
16

 , · · · =
  n

1
n
1

2n−1

 
n∈N

Definition 3.17 A sequence (an)n∈N of vectors an ∈ Rn converges to a ∈ Rn, if

∀ε > 0 ∃N(ε) ∈ N |an − a | < ε ∀ n ≥ N(ε)

Notation: lim
n→∞

an = a

Theorem 3.19 A (vector) sequence (an)n∈N converges to a if and only if all its coordinate
sequences converge to the respective coordinates of a . (Proof as exercise.)
Notation:

ak =

 ak1
...
akn

 (ak)k∈N ak ∈ Rn

Note: Theorem 3.19 enables us to lift most properties of sequences of real numbers to
sequences of vectors.

3.5.3 Functions from Rn to Rm

m = 1 : Functions f from D ⊂ Rn to B ⊂ R have the form

f : D → B , x 7→ f(x ) x1
...
xn

 7→ f(x1, · · · , xn)

Example 3.19

f(x1, x2) = sin(x1 + lnx2)
m 6= 1 : Functions f from D ⊂ Rn to B ⊂ Rm have the form

f : D → B , x 7→ f(x )
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...
xn

 7→
 f1(x1, · · · , xn)

...
fm(x1, · · · , xn)


Example 3.20

1.
f : R3 → R2 x1

x2

x3

 7→ ( √
x1x2x3

cosx1 + sinx2

)
2. Weather parameters: temperature, air pressure and humidity at any point on the earth

f : [0◦, 360◦]× [−90◦, 90◦]→ [−270,∞]× [0,∞]× [0, 100%]

(
Θ
Φ

)
7→
 temperature(Θ,Φ)

airpressure(Θ,Φ)
humidity(Θ,Φ)


Note: The components f1(x ), · · · , fm(x ) can be viewed (analysed) independently. Thus,
in the following we can restrict ourselves to f : Rn → R.

3.5.3.1 Contour Plots

Definition 3.18 Let D ⊂ R2, B ⊂ R, c ∈ B, f : D → B. The set {(x1, x2)|f(x1, x2) = c}
is called contour of f to the niveau c.

Example 3.21 f(x1, x2) = x1x2

x1x2 = c

for
x1 6= 0 : x2 =

c

x1

(hyperbolas)
c = 0 ⇔ x1 = 0 ∨ x2 = 0

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

ContourPlot[x y, {x,-3,3}, {y,-3,3},
Contours -> {0,1,2,3,4,5,6,7,8,9,-1,

-2,-3,-4,-5,-6,-7,-8,-9},
PlotPoints -> 60]

-2

0

2

-2

0

2
-5

0

5

-2

0

2

Plot3D[x y, {x,-3,3}, {y,-3,3},
PlotPoints -> 30]
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3.5.4 Continuity in Rn

analogous to continuity of functions in one variable:

Definition 3.19 Let f : D → Rm a function and a ∈ Rn. If there is a sequence (an)
(maybe more than one sequence) with lim

n→∞
an = a , we write

lim
x→a

f (x ) = c,

if for any sequence (xn),xn ∈ D with lim
n→∞

xn = a :

lim
n→∞

f (xn) = c

Definition 3.20 (Continuity)
Let f : D → Rm a function and a ∈ D. The function f is continuous in a , if lim

x→a
f (x ) =

f (a). f is continuous in D, if f is continuous in all points in D.

Note: These definitions are analogous to the one-dimensional case.

Theorem 3.20 If f : D → Rm, g : D → Rm, h : D → R are continuous in x 0 ∈ D, then

f + g , f − g , f g and
f
h

(if h(x 0)) 6= 0 ) are continuous in x 0.

3.5.5 Differentiation of Functions in Rn

3.5.5.1 Partial Derivatives

Example 3.22
f : R2 → R

f(x1, x2) = 2x2
1x

3
2

keep x2 = const., and compute the 1–dim. derivative of f w.r.t. x1:

∂f

∂x1

(x1, x2) = fx1(x1, x2) = 4x1x
3
2

analogous with x1 = const.
∂f

∂x2

= 6x2
1x

2
2

second derivatives:

∂
∂x2

∂
∂x1

(x1, x2) = 12x1x
2
2

∂
∂x1

∂
∂x2

(x1, x2) = 12x1x
2
2

}
⇒ ∂

∂x1

∂f

∂x2

=
∂

∂x2

∂f

∂x1
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Example 3.23
Φ(u, v, w) = uv + cosw

Φu(u, v, w) = v

Φv(u, v, w) = u

Φw(u, v, w) = − sinw

Definition 3.21 If f (x ) =

 f1(x1, · · · , xn)
...

fm(x1, · · · , xn)

 is partially differentiable in x = x 0, i.e.

all partial Derivatives ∂fi
∂xk

(x 0)(i = 1, · · · ,m, k = 1, · · · , n) exist, then the matrix

f ′(x 0) =


∂f1

∂x1
(x 0) ∂f1

∂x2
(x 0) · · · ∂f1

∂xn
(x 0)

∂f2

∂x1
(x 0) ∂f2

∂x2
(x 0) · · · ∂f2

∂xn
(x 0)

...
...

...
...

∂fm
∂x1

(x 0) ∂fm
∂x2

(x 0) · · · ∂fm
∂xn

(x 0)


is called Jacobian matrix.

Example 3.24 Linearisation of a function: f : R2 → R3 in x 0

f (x ) =

 2x2

sin(x1 + x2)
ln(x1) + x2



f ′(x ) =

 0 2
cos(x1 + x2) cos(x1 + x2)

1
x1

1



1–dimensional

f ′(x0) = lim
x 7→x0

f(x)− f(x0)

x− x0

f(x  )+f’(x  )(x−x  )o o o

xxo

f(x)

Linearisation g of f in x 0 =
(
π
0

)
g(x1, x2) = f (π, 0) + f ′(π, 0)

[(
x1

x2

)
−
(
π
0

)]

⇒ g(x1, x2) =

 0
0

ln π

+

 0 2
−1 −1

1
π

1

( x1 − π
x2

)
=

 2x2

−x1 − x2 + π
x1

π
+ x2 + ln π − 1
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Note: For x → x 0 i.e. close to x 0 the linearisation g is a good approximation to f (under
which condition?).

Example 3.25 We examine the function f : R2 → R with

f(x, y) =

{
x y√
x2+y2

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

Differentiability: f is differentiable on R2\{(0, 0)} since it is built up of differentiable
functions by sum, product and division.

∂f

∂x
(x, y) =

y√
x2 + y2

− x2 y

(x2 + y2)
3
2

∂f

∂x
(0, y) =

y

y
= 1

∂f

∂x
(x, 0) = 0

⇒ lim
y→0

∂f

∂x
(0, y) 6= lim

x→0

∂f

∂x
(x, 0)

⇒ the partial derivative ∂f
∂x

is not continuous in (0, 0). ⇒ f is in (0, 0) not differentiable
.

Symmetries:

1. f is symmetric wrt. exchange of x and y, i.e. w.r.t. the plane y = x.

2. f is symmetric wrt. exchange of x and −y, i.e. w.r.t. the plane y = −x.

3. f(−x, y) = −f(x, y), d.h. f is symmetric w.r.t. the y-axis.

4. f(x,−y) = −f(x, y), d.h. f is symmetric w.r.t. the x-axis.

Contours:
x y√
x2 + y2

= c ⇔ x y = c
√
x2 + y2 ⇒ x2 y2 = c2 (x2 + y2)

⇔ y2(x2 − c2) = c2x2 ⇒ y = ± cx√
x2 − c2

⇒
Contours:

y =

{
cx√
x2−c2 if c > 0, x > 0 (1. Quadr.) and c < 0, x < 0 (2. Quadr.)

− cx√
x2−c2 if c > 0, x < 0 (3. Quadr.) and c < 0, x > 0 (4. Quadr.)

Signs in the quadrants:
- +
+ -

c

c

f(x,y)=c
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-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-4

-2

0

2

4
-4

-2

0

2

4

-2

0

2

-4

-2

0

2

4

Continuity: f is continuous on R2\{(0, 0)}, since it is built up of continuous functions by
sum, product and division.

Continuity in (0, 0):
Let ε > 0 such that |x | = ε, i.e. ε =

√
x2 + y2 ⇔ y = ±√ε2 − x2

⇒ f(x, y) = ±x
√
ε2 − x2

ε
= ±x ε

√
1− x2/ε2

ε
= ±x

√
1− x2/ε2

from |x| ≤ ε we get

|f(x, y)| ≤ |x| = ε and lim
x→0

f(x, y) = 0

Thus f is continuous in (0, 0).

3.5.5.2 The Gradient

Definition 3.22 f : D → R(D ⊂ Rn)

The Vector gradf(x ) := f ′(x )T =


∂f
∂x1

(x )
...

∂f
∂xn

(x )

 is called gradient of f .

The gradient of f points in the direction of the steepest ascent of f .
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Example 3.26

f(x, y) = x2 + y2

∂f

∂x
(x, y) = 2x

∂f

∂y
(x, y) = 2y

⇒ gradf(x, y) =

(
2x
2y

)
= 2

(
x
y

)
x

x
1 3

x

y

−1−3

−3

−1

1

3

z = 1

z = 3

y

3.5.5.3 Higher Partial Derivatives

Let f : D → Rm(D ⊂ Rn). Thus
∂f
∂xi

(x) is again a function mapping from
◦
D to Rm and

∂

∂xk

(
∂f

∂xi

)
(x ) =:

∂2f

∂xk∂xi
(x ) = f xi,xk(x )

is well defined.

Theorem 3.21 Let D ⊂ Rn open and f : D → Rm two times partially differentiable. Then
we have for all x 0 ∈ D and all i, j = 1, · · · , n

∂2f

∂xi∂xj
(x 0) =

∂2f

∂xj∂xi
(x 0)

Consequence: If f : D → Rn(D ⊂ Rn open) is k–times continuously partially differentiable,
then

∂kf

∂xik∂xik−1
· · · ∂xi1

=
∂kf

∂xiΠ(k)
. . . ∂xiΠ(1)

for any Permutation Π of the numbers 1, . . . , k.

3.5.5.4 The Total Differential

If f : Rn → R is differentiable, then the tangential mapping ft(x ) = f(x 0) + f ′(x 0)(x − x 0)
represents a good approximation to the function f in the neighborhood of x 0 which can be
seen in

ft(x )− f(x 0) = f ′(x 0)(x − x 0).

With
df(x ) := ft(x )− f(x 0) ≈ f(x )− f(x 0)

and

dx =

 dx1
...
dxn

 := x − x 0
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we get:
df(x ) = f ′(x 0)dx

or

df(x ) =
n∑
k=1

∂f

∂xk
(x 0)dxk =

∂f

∂x1

(x 0)dx1 + · · ·+ ∂f

∂xn
dxn

Definition 3.23 The linear mapping df =
n∑
k=1

∂f

∂xk
(x 0)dxk is called total differential

of the function f in x 0.

Note: Since in a neighborhood of x 0, ft is a good approximation of the function f , we
have for all x close to x 0:

df(x ) ≈ f(x )− f(x 0).

Thus df(x ) gives the approximate deviation of the function value f(x ) from f(x 0), when x
deviates from x 0 a little bit.

3.5.5.5 Application: The Law of Error Propagation

Example 3.27 For a distance of s = 10 km a runner needs the time of t = 30min yielding
an average speed of v = s

t
= 20km

h
. Let the measurement error for the distance s be

∆s = ±1m and for the time we have ∆t = ±1 sec. Give an upper bound on the propagated
error ∆v for the average speed!

This can be solved as follows. To the given measurements x1, · · · , xn, a function f : Rn → R
has to be applied. The measurement error for x1, · · · , xn is given as ±∆x1, · · · ,±∆xn
(∆xi > 0 ∀i = 1, · · · , n). The law of error propagation gives as a rough upper bound for
the error ∆f(x ) of f(x1, · · · , xn) the assessment

∆f(x1, · · · , xn) <

∣∣∣∣ ∂f∂x1

(x )

∣∣∣∣∆x1 + . . .+

∣∣∣∣ ∂f∂xn (x )

∣∣∣∣∆xn
Definition 3.24 We call

∆fmax(x1, · · · , xn) :=

∣∣∣∣ ∂f∂x1

(x )

∣∣∣∣∆x1 + . . .+

∣∣∣∣ ∂f∂xm (x )

∣∣∣∣∆xn
the maximum error of f . The ratio ∆fmax(x )

f(x )
is the relative maximum error.

Note: ∆fmax typically gives a too high estimate for the error of f , because this value
only occurs if all measurement errors dx1, · · · , dxn add up with the same sign. This formula
should be applied for about n ≤ 5.
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Definition 3.25 When the number of measurements n becomes large, a better estimate
for the error ∆f is given by the formula

∆fmean(x1, · · · , xn) :=

√(
∂f

∂x1

(x )

)2

∆x1 + . . .+

(
∂f

∂xm
(x )

)2

∆xn

for the mean error of f .

Example 3.28 Solution fo example 3.27. Application of the maximum error formula leads
to

∆v(s, t) =

∣∣∣∣∂v∂s (s, t)

∣∣∣∣∆s+

∣∣∣∣∂v∂t (s, t)

∣∣∣∣∆t =

∣∣∣∣1t
∣∣∣∣∆s+

∣∣∣− s
t2

∣∣∣∆t =
∆s

t
+
s

t2
∆t

=
0.001

0.5

km

h
+

10

0.25

km

h2

1

3600
h =

(
0.002 +

40

3600

)
km

h
= 0.013

km

h

This can be compactly written as the result v = (20± 0.013)km
h
.

Definition 3.26 Let f : D → R two times continuously differentiable. The n×n–Matrix

(Hessf)(x ) :=


∂2f
∂x2

1
(x ) . . . ∂2f

∂x1∂xn
(x )

...
...

∂2f
∂xn∂x1

(x ) . . . ∂2f
∂x2
n
(x )


is the Hesse–Matrix of f in x .

Note: Hessf is symmetric, since

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi

3.5.6 Extrema without Constraints

Again we appeal to your memories of one–dimensional analysis: How do you determine
extrema of a function f : R→ R? This is just a special case of what we do now.
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Definition 3.27 Let D ⊂ Rn and f : D → R a function. A point x ∈ D is a local
maximum (minimum) of f , if there is a neighborhood U ⊂ D of x such that

f(x ) ≥ f(y) (f(x ) ≤ f(y)) ∀y ∈ U.

Analogously, we have an isolated local Maximum (Minimum) in x , if there is a
neighborhood U ⊂ D of x such that

f(x ) > f(y) (bzw. f(x ) < f(y)) ∀y ∈ U, y 6= x

All these points are called extrema.
If the mentioned neighborhood U of an extremum is the whole domain, i.e. U = D, then
the extremum is global.

Give all local, global, isolated and non-isolated maxima and minima of the function shown
in the following graphs:
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4
-4
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0
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-4
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4

Plot3D[f[x,y], {x,-5,5},{y,-5,5}, PlotPoints

-> 30]
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ContourPlot[f[x,y],

{x,-5,5},{y,-5,5}, PlotPoints

-> 60, ContourSmoothing ->

True,ContourShading-> False]

Theorem 3.22 Let D ⊂ Rn be open and f : D → R partially differentiable . If f has a
local extremum in x ∈ D, then gradf(x ) = 0.

Proof: Reduction on 1–dim. case:
For i = 1, · · · , n define gi(h) := f(x1, · · · , xi + h, · · · , xn). If f has a local extremum in x ,

then all gi have a local extremum in 0. Thus we have for all i: g′i(0) = 0. Since g′i(0) = ∂f(x )
∂xi

we get

gradf(x ) =


∂f
∂x1

(x )
...

∂f
∂xn

(x )

 = 0

Note:

• Theorem 3.22 represents a necessary condition for local extrema.
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• Why is the proposition of Theorem 3.22 false if D ⊂ Rn is no open set?

Linear algebra reminder:

Definition 3.28 Let A a symmetric n× n–Matrix of real numbers.

A is positive (negative) definite, if all eigenvalues of A are positive (negative).
A is positive (negative) semidefinite, if all eigenvalues are ≥ 0 (≤ 0).
A is indefinite, if all eigenvalues are 6= 0 and there exist positive as well as negative
eigenvalues.

Theorem 3.23 Criterium of Hurwitz
Let A real valued symmetric matrix. A ist positive definite, if and only if for k = 1, · · · , n∣∣∣∣∣∣∣

a11 · · · a1k
...

...
ak1 · · · akk

∣∣∣∣∣∣∣ > 0

A is negative definite if and only if -A is positive definite.

Theorem 3.24 For D ⊂ Rn open and two times continuously differentiable f : D → R
with gradf(x ) = 0 for x ∈ D the following holds:

a) (Hessf)(x ) positive definite ⇒ f has in x an isolated minimum

b) (Hessf)(x ) negative definite ⇒ f has in x an isolated maximum

c) (Hessf)(x ) indefinite ⇒ f has in x no local extremum.

Note: Theorem 3.24 is void if (Hessf)(x ) is positive oder negative semidefinite.

Procedure for the application of theorems 3.22 and 3.23 to search local extrema
of a function f : (D ⊂ Rn)→ R:

1. Computation of gradf

2. Computation of the zeros gradf

3. Computation of the Hessian matrix Hessf

4. Evaluation of Hessf(x ) for all zeros x of gradf .

Example 3.29 Some simple functions f : R2 → R:

1. f(x, y) = x2 + y2 + c

gradf(x, y) =

(
2x
2y

)
⇒ gradf(0, 0) =

(
0
0

)
= 0
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Hessf =

(
2 0
0 2

)
is positive definite on all R2. ⇒ f has an isolated local minimum in 0 (paraboloid).

2. f(x, y) = −x2 − y2 + c

gradf(0, 0) = 0 Hessf =

( −2 0
0 −2

)
⇒ isolated local maximum in 0 (paraboloid).

3. f(x, y) = ax+ by + c a, b 6= 0

gradf =

(
a
b

)
6= 0 ∀x ∈ R2

⇒ no local extremum.

4. f(x, y) = x2 − y2 + c

gradf(x, y) =

(
2x
−2y

)
⇒ gradf(0, 0) = 0

Hessf =

(
2 0
0 −2

)
⇒ Hessf indefinite ⇒ f has no local extremum.

5. f(x, y) = x2 + y4

gradf =

(
2x
4y3

)
⇒ gradf(0, 0) = 0

Hessf(0, 0) =

(
2 0
0 0

)
⇒ Hessf positive smidefinite, but f has in 0 an isolated minimum.

6. f(x, y) = x2

gradf =

(
2x
0

)
⇒ gradf(0, y) = 0

Hessf(0, 0) =

(
2 0
0 0

)
⇒ Hessf positive semidefinite, but f has a (non isolated) local minimum. All points
on the y–axis (x = 0) are local minima.

7. f(x, y) = x2 + y3

gradf(x, y) =

(
2x
3y2

)
⇒ gradf(0, 0) = 0

Hessf(0, 0) =

(
2 0
0 0

)
⇒ Hessf positive semidefinite, but f has no local extremum.
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3.5.7 Extrema with Constraints

Example 3.30 Which rectangle (length x, width y) has maximal area, given the perimeter
U .

Area f(x, y) = xy. The function f(x, y) has no local maximum on R2!

Constraint: U = 2(x+ y) or x+ y = U
2

substituted in f(x, y) = xy

⇒ g(x) := f(x,
U

2
− x) = x(

U

2
− x) =

U

2
x− x2

g′(x) =
U

2
− 2x = 0

x = U
4

y = U
4

 ⇒ x = y

g′′(
U

4
) = −2

⇒ x = y = U/4 ist (the unique) maximum of the area for constant perimeter U !

In many cases substitution of constraints is not feasible!

Wanted: Extremum of a function f(x1, · · · , xn) under the p constraints

h1(x1, · · · , xn) = 0
...

hp(x1, · · · , xn) = 0

Theorem 3.25 Let f : D → R and h : D → Rp be continuously differentiable functions on
an open set D ⊂ Rn, n > p and the matrix h ′(x ) has rank p for all x ∈ D.

If x0 ∈ D is an extremum of f under the constraint(s) h(x 0) = 0, there exist real
numbers λ1, · · · , λp with

∂f

∂xi
(x 0) +

p∑
k=1

λk
∂hk
∂xi

(x 0) = 0 ∀i = 1, · · · , n

and
hk(x 0) = 0 ∀k = 1, · · · , p

Illustration:
For p = 1, i.e. only one given constraint, the theorem implies that for an extremum x0 of f
under the constraint h(x 0) = 0 we have

gradf(x 0) + λgradh(x 0) = 0

• gradf and gradh are parallel in the extremum x0 !

• ⇒ Contours of f and h for h(x ) = 0 are parallel in x0 .
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• The numbers λ1, · · · , λp are the Lagrange multipliers.

Note: We have to solve n + p equations with n + p unknowns. Among the solutions of
this (possibly nonlinear) system the extrema have to be determined. Not all solutions need
to be extrema of f under the constraint(s) h(x 0) = 0 (necessary but not sufficient condition
for extrema.)

Definition 3.29 Let f, h be given as in theorem 3.25. The function L : D → R

L(x1, · · · , xn) = f(x1, · · · , xn) +

p∑
k=1

λkhk(x1, · · · , xn)

is called Lagrange function.

Conclusion: The equations to be solved in theorem 3.25 can be represented as:

∂L

∂xi
(x ) = 0 (i = 1, · · · , n)

hk(x ) = 0 (k = 1, · · · , p)

Example 3.31 Extrema of f(x, y) = x2+y2+3 under the constraint h(x, y) = x2+y−2 = 0

 0

 0.5

 1

 1.5

 2

-1.5 -1 -0.5  0  0.5  1  1.5

y

x

Contours of x2+y2+3 and constraint x2+y-2=0

constraint

L(x, y) = x2 + y2 + 3 + λ(x2 + y − 2)

∂L

∂x
(x, y) = 2x+ 2λx

∂L

∂y
(x, y) = 2y + λ

gradL(x, y) = 0 , h(x, y) = 0
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2x+ 2λx = 0 (1)

2y + λ = 0 (2)

x2 + y − 2 = 0 (3)

(2) in (1): 2x− 4xy = 0 (4)

y = 2− x2 (3a)

(3a) in (4): 2x− 4x(2− x2) = 0

first solution: x 1 =

(
0
2

)
is a maximum.

2− 8 + 4x2 = 0

4x2 = 6

x2,3 = ±
√

3

2
y2,3 =

1

2

x 2 =

( √
3
2

1
2

)
and x 3 =

(
−
√

3
2

1
2

)
are minima.
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Example 3.32 Extrema of the function f(x, y) = 4x2 − 3xy on the disc
K0 ,1 = {(x, y)|x2 + y2 ≤ 1}.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
 

Show[ContourPlot[4*x^2 - 3 *x*y, {x,-1,1}, {y,-1,1}, PlotPoints -> 60,
Contours -> 20, ContourSmoothing -> True, ContourShading -> False, PlotLabel -> " "],
Plot[{Sqrt[1-x^2],-Sqrt[1-x^2]}, {x,-1,1}], AspectRatio -> 1 ]

1. local extrema inside the disc D0 ,1:

gradf(x, y) =

(
8x− 3y
−3x

)
= 0

⇒ x =

(
0
0

)
is the unique zero of the gradient.

Hessf =

(
8 −3
−3 0

)
|8| = 8∣∣∣∣ 8 −3

−3 0

∣∣∣∣ = 0− 9 = −9

⇒ Hessf is neither positive nor negative definite. Eigenvalues of Hessf =: A

Ax = λx ⇔ (A− λ)x = 0

⇔
(

8− λ −3
−3 −λ

)
x = 0⇔ det

(
8− λ −3
−3 −λ

)
= 0

⇔ (8− λ)(−λ)− 9 = 0 ⇔ λ2 − 8λ− 9 = 0

λ1,2 = 4±√16 + 9

λ1 = 9

λ2 = −1

⇒ Hessf is indefinite
⇒ f has no local extremum on any open set D.
⇒ in particular f has on D0 ,1 no extremum!
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2. Local extrema on the margin, i.e. on ∂D0,1: local extrema von f(x, y) = 4x2−3xy
under the constraint x2 + y2 − 1 = 0:

Lagrangefunction L = 4x2 − 3xy + λ(x2 + y2 − 1)

∂L

∂x
= 8x− 3y + 2λx = (2λ+ 8)x− 3y

∂L

∂y
= −3x+ 2λy

Equations for x, y, λ:

(1) 8x− 3y + 2λx = 0
(2) −3x+ 2λy = 0
(3) x2 + y2 − 1 = 0

(1)y − (2)x = (4) 8xy − 3y2 + 3x2 = 0

first solution: (3) ⇒ (3a) : y2 = 1− x2

(3a)in(4) : ±8x
√

1− x2 − 3(1− x2) + 3x2 = 0

Subst.: x2 = u : ±8
√
u
√

1− u = 3(1− u)− 3u = 3− 6u

squaring:
64u(1− u) = 9− 36u+ 36u2

−64u2 + 64u− 36u2 + 36u− 9 = 0
−100u2 + 100u− 9 = 0

u2 − u+ 9
100

= 0

u1,2 = 1
2
±
√

1
4
− 9

100
= 1

2
±
√

25−9
100

= 1
2
± 4

10

u1 = 0.1
u2 = 0.9
x1,2 = ± 1√

10
≈ ±0.3162

x3,4 = ± 3√
10
≈ ±0.9487

Contours:
f(x, y) = 4x2 − 3xy = c

y =
−c+ 4x2

3x
=

4

3
x− c

3x

x3 =
3√
10
⇒ y3 = ±

√
1− x2

3 = ± 1√
10

f

(
3√
10
,

1√
10

)
= 4

9

10
− 3

3

10
=

27

10

f

(
3√
10
,− 1√

10

)
= 4

9

10
+ 3

3

10
=

45

10

⇒ f(x, y) has on K̄0,1 in x 1 =

(
3√
10

− 1√
10

)
and in x 2 =

(
3√
10
1√
10

)
isolated local maxima

⇒ f(x, y) has on K̄0,1 in x 3 =

(
1√
10
3√
10

)
and in x 4 =

(
− 1√

10

− 3√
10

)
isolated local minima.
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3.5.7.1 The Bordered Hessian

In order to check whether a candidate point for a constrained extremum is a maximum or
minimum, we need a sufficient condition, similarly to the definiteness of the Hessian in the
unconstrained case. Here we need the Bordered Hessian

Hess :=



0 . . . 0 ∂h1

∂x1
. . . ∂h1

∂xn
...

...
...

...

0 . . . 0 ∂hp
∂x1

. . . ∂hp
∂xn

∂h1

∂x1
. . . ∂hp

∂x1

∂2L
∂x2

1
. . . ∂2L

∂x1∂xn
...

...
...

...
∂h1

∂xn
. . . ∂hp

∂xn
∂2L

∂xn∂x1
. . . ∂2L

∂x2
n


This matrix can be used to check on local minima and maxima by computing certain subde-
terminants. Here we show this only for the two dimensional case with one constraint where
the bordered Hessian has the form

Hess :=

 0 ∂h
∂x1

∂h
∂x2

∂h
∂x1

∂2L
∂x2

1

∂2L
∂x1∂x2

∂h
∂x2

∂2L
∂x2∂x1

∂2L
∂x2

2


and the sufficient criterion for local extrema is (in contrast to the unconstrained case!) the
following simple determinant condition:
Under the constraint h(x, y) = 0 the function f has in (x, y) a

• local maximum, if |Hess(x, y)| > 0

• local minimum, if |Hess(x, y)| < 0.

If |Hess(x, y)| = 0, we can not decide on the properties of the stationary point (x, y).
Application to example 3.31 yields

gradL(x, y) =

(
2x(1 + λ)

2y + λ

)

Hess(x, y) =

 0 2x 1
2x 2(1 + λ) 0
1 0 2

 .

Substitution of the first solution of gradL = 0 which is x = 0, y = 2, λ = −4 into this matrix
gives

|Hess(0, 2)| =
∣∣∣∣∣∣

0 0 1
0 −6 0
1 0 2

∣∣∣∣∣∣ = 6

which proves that we indeed have a maximum in (0, 2).
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3.6 Exercises

Sequences, Series, Continuity

Exercise 3.1 Prove (e.g. with complete induction) that for p ∈ R it holds:

n∑
k=0

(p+ k) =
(n+ 1)(2p+ n)

2

Exercise 3.2
a) Calculate √

1 +

√
1 +

√
1 +
√

1 + . . .,

i.e. the limit of the sequence (an)n∈N with a0 = 1 and an+1 =
√

1 + an. Give an exact
solution as well as an approximation with a precision of 10 decimal places.

b) Prove that the sequence (an)n∈N converges.

Exercise 3.3 Calculate

1 +
1

1 + 1
1+ 1

1+ 1
1+...

,

i.e. the limit of the sequence (an)n∈N with a0 = 1 and an+1 = 1+1/an. Give an exact solution
as well as an approximation with a precision of 10 decimal places.

Exercise 3.4 Calculate the number of possible draws in the German lottery, which result
in having three correct numbers. In German lottery, 6 balls are drawn out of 49. The 49
balls are numbered from 1-49. A drawn ball is not put back into the pot. In each lottery
ticket field, the player chooses 6 numbers out of 49. Then, what is the probability to have
three correct numbers?

Exercise 3.5 Investigate the sequence (an)n∈N with an := 1 +
1

2
+

1

3
+

1

4
+

1

5
+ . . . +

1

n
regarding convergence.

Exercise 3.6 Calculate the infinite sum
∞∑
n=0

1

2n
.

Exercise 3.7 Prove: A series
∑∞

k=0 ak with ∀k : ak > 0 converges if and only if the sequence
of the partial sums is limited.

Exercise 3.8 Calculate an approximation (if possible) for the following series and investigate
their convergence.

a)
∞∑
n=0

(n+ 1)2−n b)
∞∑
n=0

4n(n+ 1)!n−n c)
∞∑
n=0

3n[4 + (1/n)]−n

Exercise 3.9 Investigate the following functions f : R → R regarding continuity (give an
outline for each graph):

a) f(x) =
1

1 + e−x
b) f(x) =

{
0 if x = 1
1

x−1 else c) f(x) =
{

x+ 4 if x > 0
(x+ 4)2 else
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d) f(x) =
{

(x− 2)2 if x > 0
(x+ 2)2 else

e) f(x) = |x| f) f(x) = x−bxc g) f(x) =
∣∣∣∣⌊x+

1
2

⌋
− x
∣∣∣∣

Exercise 3.10 Show that f : R→ R with

f(x) =

{
0 falls x rational
1 falls x irrational

is not continuous in any point.

Taylor–Series

Exercise 3.11 Calculate the Taylor series of sine and cosine with x0 = 0. Prove that the
Taylor series of sine converges towards the sine function.

Exercise 3.12 Try to expand the function f(x) =
√
x at x0 = 0 and x0 = 1 into a Taylor

series. Report about possible problems.

Exercise 3.13 Let f be expandable into a Taylor series on the interval (−r, r) around 0
((r > 0). Prove:
a) If f is an even function (f(x) = f(−x)) for all x ∈ (−r, r), then only even exponents

appear in the Taylor series of f , it has the form
∞∑
k=0

a2kx
2k.

b) If f is an odd function (f(x) = −f(−x)) for all x ∈ (−r, r), then only odd exponents

appear in the Taylor series of f , it has the form
∞∑
k=0

a2k+1x
2k+1.

Exercise 3.14 Calculate the Taylor series of the function

f(x) =

{
e−

1
x2 if x 6= 0

0 if x = 0

at x0 = 0 and analyse the series for convergence. Justify the result!

Exercise 3.15 Calculate the Taylor series of the function arctan in x0 = 0. Use the result
for the approximate calculation of π. (Use for this for example tan(π/4) = 1.)

Functions from Rn to Rm

Exercise 3.16 Prove that the scalar product of a vector x with itself is equal to the square
of its length (norm).

Exercise 3.17
a) Give a formal definition of the function f : R→ R+ ∪ {0} with f(x) = |x|.
b) Prove that for all real numbers x, y |x+ y| ≤ |x|+ |y|.
Exercise 3.18
a) In industrial production in the quality control, components are measured and the values

x1, . . . xn determinated. The vector d = x−s indicates the deviation of the measurements
to the nominal values s1, . . . , sn. Now define a norm on Rn such that ||d || < ε holds, iff
all deviations from the nominal value are less than a given tolerance ε.
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b) Prove that the in a) defined norm satisfies all axioms of a norm.

Exercise 3.19 Draw the graph of the following functions f : R2 → R (first manually and
then by the computer!):

f1(x, y) = x2 + y3, f2(x, y) = x2 + e−(10x)2

f3(x, y) = x2 + e−(5(x+y))2

+ e−(5(x−y))2

Exercise 3.20 Calculate the partial derivatives ∂f
∂x1

, ∂f
∂x2

, ∂f
∂x3

of the following functions

f : R3 → R

a) f(x ) = |x | b) f(x ) = xx2
1 + xx3

1 c) f(x ) = x
(x2+x3)
1

d) f(x ) = sin(x1 + x2) e) f(x ) = sin(x1 + a x2)

Exercise 3.21 Build a function f : R2 → R, which generates roughly the following graph:
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Plot3D[f[x,y], {x,-5,5},{y,-5,5},

PlotPoints -> 30]

-4 -2 0 2 4

-4

-2

0

2

4

ContourPlot[f[x,y], {x,-5,5},{y,-5,5},

PlotPoints -> 60, ContourSmoothing ->

True,ContourShading-> False]

Exercise 3.22 Calculate the derivative matrix of the function f (x1, x2, x3) =

( √
x1x2x3

sin(x1x2x3)

)
.

Exercise 3.23 For f (x, y) =

( √
x y

sin(ex + ey)

)
, find the tangent plane at x0 =

(
1
2

)
.

Exercise 3.24 Draw the graph of the function

f(x, y) =

{
y(1 + cos πx

y
) for|y| > |x|

0 else
.

Show that f is continuous and partially differentiable in R2, but not in 0 .

Exercise 3.25 Calculate the gradient of the function f(x, y) =
x2 + y2

1 + x4 + y4
and draw it as

an arrow at different places in a contour lines image of f .

Exercise 3.26 The viscosity η of a liquid is to be determinated with the formula K = 6πηvr.
Measured: r = 3cm, v = 5cm/sec, K = 1000dyn. Measurement error: |∆r| ≤ 0.1cm,
|∆v| ≤ 0.003cm/sec, |∆K| ≤ 0.1dyn. Determine the viscosity η and its error ∆η.



68 3 Calculus – Selected Topics

Extrema

Exercise 3.27 Examine the following function for extrema and specify whether it is a local,
global, or an isolated extremum:

a) f(x, y) = x3y2(1− x− y)

b) g(x, y) = xk + (x+ y)2 (k = 0, 3, 4)

Exercise 3.28 Given the function f : R2 → R, f(x, y) = (y − x2)(y − 3x2).
a) Calculate gradf and show: gradf(x, y) = 0⇔ x = y = 0.

b) Show that (Hessf)(0) is semi-definite and that f has a isolated minimum on each line
through 0.

c) Nevertheless, f has not an local extremum at 0 (to be shown!).

Exercise 3.29 Given the functions Φ(x, y) = y2x− x3, f(x, y) = x2 + y2 − 1.
a) Examine Φ for extrema.

b) Sketch all contour lines h = 0 of Φ.

c) Examine Φ for local extrema under the constraint f(x, y) = 0.

Exercise 3.30 The function

f(x, y) =
sin(2x2 + 3y2)

x2 + y2

has at (0,0) a discontinuity. This can be remedied easily by defining e.g. f(0, 0) := 3.

a) Show that f is continuous on all R2 except at (0,0). Is it possible to define the function
at the origin so that it is continuous?

b) Calculate all local extrema of the function f and draw (sketch) a contour line image (not
easy).

c) Determine the local extrema under the constraint (not easy):

i) x = 0.1

ii) y = 0.1

iii) x2 + y2 = 4

Exercise 3.31 Show that grad(f g) = g gradf + f gradg.



Chapter 4

Statistics and Probability Basics

Based on samples, statistics deals with the derivation of general statements on certain
features.
1

4.1 Recording Measurements in Samples

Discrete feature: finite amount of values.

Continuous feature: values in an interval of real numbers.

Definition 4.1 Let X be a feature (or random variable). A series of measurements
x1, . . . , xn for X is called a sample of the length n.

Example 4.1 For the feature X (grades of the exam Mathematics I in WS 97/98) following
sample has been recorded:
1.0 1.3 2.2 2.2 2.2 2.5 2.9 2.9 2.9 2.9 2.9 2.9 2.9 3.0 3.0 3.0 3.3 3.3 3.4 3.7 3.9 3.9 4.1 4.7
Let g(x) be the absolute frequency of the value x. Then

h(x) =
1

n
g(x)

is called relative frequency or empirical density of X.

Grade X Absolute frequency g(x) Relative frequency h(x)
1.0 1 0.042
1.3 1 0.042
2.2 3 0.13
2.5 1 0.042
2.9 7 0.29
3.0 3 0.13
3.3 2 0.083
3.4 1 0.042
3.7 1 0.042
3.9 2 0.083
4.1 1 0.042
4.7 1 0.042

1The content of this chapter is strongly leaned on [?]. Therefore, [?] is the ideal book to read.
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If x1 < x2 < . . . xn, then

H(x) =
∑
t≤x

h(t)

is the empirical distribution function.
It is apparent from the data that 8.3 % of the participating students in the exam Mathematics
1 in WS 97/98 had a grade better than 2.0.
On the contrary, the following statement is an assumption: In the exam Mathematics 1, 8.3
% of the students of the HS RV-Wgt achieve a grade better than 2.0. This statemtent is a
hypothesis and not provable.
However, under certain conditions one can determine the probability that this statement is
true. Such computations are called statistical induction.
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When calculating or plotting empirical density functions, it is often advantageous to group
measured values to classes.

Example 4.2
Following frequency function has been determined from runtime measurements of a random-
ized program (automated theorem prover with randomized depth-first search and backtrack-
ing):
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In this graphic, at any value ti ∈ {1, . . . , 60000} a frequency in the form of a histogram is
shown. One can clearly see the scattering effects due to low frequencies per time value ti. In
the next image, 70 values each have been summarized to a class, which results in 600 classes
overall.
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Summarizing 700 values each to a class one obtains 86 classes as shown in the third image.
Here, the structure of the frequency distribution is not recognizable anymore.
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The amount ` of the classes should neither be choosen too high nor too low. In [?] a rule of
thumb ` ≤ √n is given.

4.2 Statistical Parameters

The effort to describe a sample by a single number is fullfilled by following definition:

Definition 4.2 For a sample x1, x2, . . . xn the term

x̄ =
1

n

n∑
i=1

xi

is called arithmetic mean and if x1 < x2 < . . . xn, then the sample median is defined
as

x̃ =

{
xn+1

2
if n odd

1
2

(
xn

2
+ xn

2
+1

)
if n even

In the example 4.2, the arithmetic mean is marked with the symbol 4. It is interesting that
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the arithmetic mean minimizes the sum of squares of the distances

n∑
i=1

(xi − x)2

whereas the median minimizes the sum of the absolut values of the distances

n∑
i=1

|xi − x|

(proof as exercise). Often, one does not only want to determine a mean value, but also a
measure for the mean deviation of the arithmetic mean.

Definition 4.3 The number

s2
x :=

1

n− 1

n∑
i=1

(xi − x̄)2

is called sample variance and

sx :=

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2

is called standard deviation

4.3 Multidimensional Samples

If not only grades from Mathematics 1, but for any student also the grades of Mathematics
2 and further courses are considered, one can ask if there is a statistical relationship between
the grades of different courses. Therefore, a simple tool, the covariance matrix is introduced.
For a multidimensional variable (X1, X2, . . . , Xk), a k-dimensional sample of the length n
consists of a list of vectors

(x11, x21, . . . , xk1), (x12, x22, . . . , xk2), . . . , (x1n, x2n, . . . , xkn)

By extension of example 4.1, we obtain an example for 2 dimensions.

Example 4.3
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If beside the grades of Mathematics 1 (X) the grades (Y ) of Mathe-
matics for computer science are considered, one could determine the 2-
dimensional variable (X, Y ) as per margin.
The question, if the variables X and Y are correlated can be answered by
the covariance:

σxy =
1

n− 1

n∑
i=1

(xi − x̄)(yi − ȳ)

For the grades above we determine σxy = 0.47. That means that between
these 2 variables a positive correlation exists, thus on average, a student
being good in Mathematics 1 is also good in Mathematics for computer
science.
This is also visible on the left of the following two scatter plots.

Grade X Grade Y
1.0 1.8
1.3 1.0
2.2 1.9
2.2 2.8
2.2 2.5
2.5 2.9
2.9 3.8
2.9 4.3
2.9 2.3
2.9 3.4
2.9 2.0
2.9 1.8
2.9 2.1
3.0 3.4
3.0 2.5
3.0 3.2
3.3 3.0
3.3 3.9
3.4 4.0
3.7 2.8
3.9 3.5
3.9 4.2
4.1 3.8
4.7 3.3
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For the equally distributed random numbers in the right plot σxy = 0.0025 is determined.
Thus, the two variables have a very low correlation.
If there are k > 2 variables, the data cannot easily be plotted graphically. But one can deter-
mine the covariances between two variables each in order to represent them in a covariance
matrix σ:

σij =
1

n− 1

n∑
`=1

(xi` − x̄i)(xj` − x̄j)

If dependencies among different variables are to be compared, a correlation matrix can
be determined:

Kij =
σij
si · sj ,

Here, all diagonal elements have the value 1.

Example 4.4 In a medical database of 473 patients2with a surgical removal of their ap-
pendix, 15 different symptoms as well as the diagnosis (appendicitis negative/positive) have
been recorded.

2The data was obtained from the hospital 14 Nothelfer in Weingarten with the friendly assistance of Dr.
Rampf. Mr. Kuchelmeister used the data for the development of an expert system in his diploma thesis.
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Alter: continuous.
gender_(1=m___2=w): 1,2.
pain_quadrant1_(0=nein__1=ja): 0,1.
pain_quadrant2_(0=nein__1=ja): 0,1.
pain_quadrant3_(0=nein__1=ja): 0,1.
pain_quadrant4_(0=nein__1=ja): 0,1.
guarding_(0=nein__1=ja): 0,1.
rebound_tenderness_(0=nein__1=ja): 0,1.
pain_on_tapping_(0=nein__1=ja): 0,1.
vibration_(0=nein__1=ja): 0,1.
rectal_pain_(0=nein__1=ja): 0,1.
temp_ax: continuous.
temp_re: continuous.
leukocytes: continuous.
diabetes_mellitus_(0=nein__1=ja): 0,1
appendicitis_(0=nein__1=ja): 0,1

The first 3 data sets are as follows:

26 1 0 0 1 0 1 0 1 1 0 37.9 38.8 23100 0 1
17 2 0 0 1 0 1 0 1 1 0 36.9 37.4 8100 0 0
28 1 0 0 1 0 0 0 0 0 0 36.7 36.9 9600 0 1

The correlation matrix for the data of all 473 patients is:

1. -0.009 0.14 0.037 -0.096 0.12 0.018 0.051 -0.034 -0.041 0.034 0.037 0.05 -0.037 0.37 0.012
-0.009 1. -0.0074 -0.019 -0.06 0.063 -0.17 0.0084 -0.17 -0.14 -0.13 -0.017 -0.034 -0.14 0.045 -0.2
0.14 -0.0074 1. 0.55 -0.091 0.24 0.13 0.24 0.045 0.18 0.028 0.02 0.045 0.03 0.11 0.045
0.037 -0.019 0.55 1. -0.24 0.33 0.051 0.25 0.074 0.19 0.087 0.11 0.12 0.11 0.14 -0.0091

-0.096 -0.06 -0.091 -0.24 1. 0.059 0.14 0.034 0.14 0.049 0.057 0.064 0.058 0.11 0.017 0.14
0.12 0.063 0.24 0.33 0.059 1. 0.071 0.19 0.086 0.15 0.048 0.11 0.12 0.063 0.21 0.053
0.018 -0.17 0.13 0.051 0.14 0.071 1. 0.16 0.4 0.28 0.2 0.24 0.36 0.29 -0.00013 0.33
0.051 0.0084 0.24 0.25 0.034 0.19 0.16 1. 0.17 0.23 0.24 0.19 0.24 0.27 0.083 0.084

-0.034 -0.17 0.045 0.074 0.14 0.086 0.4 0.17 1. 0.53 0.25 0.19 0.27 0.27 0.026 0.38
-0.041 -0.14 0.18 0.19 0.049 0.15 0.28 0.23 0.53 1. 0.24 0.15 0.19 0.23 0.02 0.32
0.034 -0.13 0.028 0.087 0.057 0.048 0.2 0.24 0.25 0.24 1. 0.17 0.17 0.22 0.098 0.17
0.037 -0.017 0.02 0.11 0.064 0.11 0.24 0.19 0.19 0.15 0.17 1. 0.72 0.26 0.035 0.15
0.05 -0.034 0.045 0.12 0.058 0.12 0.36 0.24 0.27 0.19 0.17 0.72 1. 0.38 0.044 0.21

-0.037 -0.14 0.03 0.11 0.11 0.063 0.29 0.27 0.27 0.23 0.22 0.26 0.38 1. 0.051 0.44
0.37 0.045 0.11 0.14 0.017 0.21 -0.00013 0.083 0.026 0.02 0.098 0.035 0.044 0.051 1. -0.0055
0.012 -0.2 0.045 -0.0091 0.14 0.053 0.33 0.084 0.38 0.32 0.17 0.15 0.21 0.44 -0.0055 1.

The matrix structure is more apparent if the numbers are illustrated as density plot3 In
the left diagram, bright stands for positive and dark for negative. The right plot shows the
absolute values. Here, white stands for a strong correlation between two variables and black
for no correlation.

3The first to images have been rotated by 90o. Therefore, the fields in the density plot correspond to the
matrix elements.
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It is clearly apparent that most of the variable pairs have no or only a very low correlation,
whereas the two temperature variables are highly correlated.

4.4 Probability Theory

The purpose of probability theory is to determine the probability of certain possible events
within an experiment.

Example 4.5 When throwing a die once, the probability for the event
”
throwing a six” is

1/6, whereas the probability for the event
”
throwing an odd number” is 1/2.

Definition 4.4 Let Ω be the set of possible outcomes of an experiment. Each ω ∈ Ω
stands for a possible outcome of the experiment. If the wi ∈ Ω exclude each other, but
cover all possible outcomes, they are called elementary events.

Example 4.6 When throwing a die once, Ω = {1, 2, 3, 4, 5, 6}, because no two of these events
can occur at the same time. Throwing an even number {2, 4, 6} is not an elementary event, as
well as throwing a number lower than 5 {1, 2, 3, 4}, because {2, 4, 6}∩{1, 2, 3, 4} = {2, 4} 6= ∅.

Definition 4.5 Let Ω be a set of elementary events. Ā = Ω − A = {ω ∈ Ω|ω /∈ A} is
called the complementary event to A. A subset A of 2Ω is called event algebra over
Ω, if:

1. Ω ∈ A.

2. With A, Ā is also in A.

3. If (An)n∈N is a sequence A , then ∪∞n=1An is also in A.

Every event algebra contains the sure event Ω as well as the impossible event ∅.
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At coin toss, one could choose A = 2Ω and Ω = {1, 2, 3, 4, 5, 6}. Thus A contains any possible
event by a toss.
If one is only interested in throwing a six, one would consider A = {6} and Ā = {1, 2, 3, 4, 5}
only, where the algebra results in A = {∅, A, Ā,Ω}.
The term of the probability should give us an as far as possible objective description of our

”
believe” or

”
conviction” about the outcome of an experiment. As numeric values, all real

numbers in the interval [0, 1] shall be possible, whereby 0 is the probability for the impossible
event and 1 the probability for the sure event.

4.4.1 The Classical Probability Definition

Let Ω = {ω1, ω2, . . . , ωn} be finite. No elementary event is preferred, that means we assume
a symmetry regarding the frequency of occurence of all elementary events. The probability
P (A) of the event A is defined by

P (A) =
|A|
|Ω| =

Amount of outcomes favourable to A

Amount of possible outcomes

It is obvious that any elementary event has the probability 1/n. The assumption of the same
probability for all elementary events is called the Laplace assumption.

Example 4.7 Throwing a die, the probability for an even number is

P ({2, 4, 6}) =
|{2, 4, 6}|

|{1, 2, 3, 4, 5, 6}| =
3

6
=

1

2
.

4.4.2 The Axiomatic Probability Definition

The classical definition is suitable for a finite set of elementary events only. For endless sets
a more general definition is required.

Definition 4.6 Let Ω be a set and A an event algebra on Ω. A mapping

P : A → [0,1]

is called probability measure if:

1. P (Ω) = 1.

2. If the events An of the sequence (An)n∈N are pairwise inconsistent, i.e. for i, j ∈ N
it holds Ai ∩ Aj = ∅, then

P

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai).

For A ∈ A, P (A) is called probability of the event A.

From this definition, some rules follow directly:
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Theorem 4.1

1. P (∅) = 0, i.e. the impossible event has the probability 0.

2. For pairwise inconsistent events A and B it holds P (A ∪B) = P (A) + P (B).

3. For a finite amount of pairwise inconsistent events A1, A2, . . . Ak it holds

P

(
k⋃
i=1

An

)
=

k∑
i=1

P (An).

4. For two each other complentary events A and Ā it holds P (A) + P (Ā) = 1.

5. For any event A and B it holds P (A ∪B) = P (A) + P (B)− P (A ∩B).

6. For A ⊆ B it holds P (A) ≤ P (B).

Proof: as exercise.

4.4.3 Conditional Probabilities

Example 4.8 In the Doggenriedstraße in Weingarten the speed of 100 vehicles is measured.
At each measurement it is recorded if the driver was a student or not. The results are as
follows:

Event Frequency Relative frequency
Vehicle observed 100 1
Driver is a student (S) 30 0.3
Speed too high (G) 10 0.1
Driver is a student and speeding (S ∩G) 5 0.05

We now ask the following question: Do students speed more frequently than the average
person, or than non-students?4 The answer is given by the probability P (G|S) for speeding
under the condition that the driver is a student.

P (G|S) =
|Driver is a student and speeding|

|Driver is a student| =
5

30
=

1

6

Definition 4.7 For two events A and B, the probability for A under the condition B
(conditional probability) is defined by

P (A|B) =
P (A ∩B)

P (B)

4 The determined probabilities can only be used for further statements if the sample (100 vehicles) is
representative. Otherwise, one can only make a statament about the observed 100 vehicles.
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At example 4.8 one can recognize that in the case of a finite event set the conditional
probability P (A|B) can be treated as the probability of A, when regarding only the event
B, i.e. as

P (A|B) =
|A ∩B|
|B|

Definition 4.8 If two events A and B behave as

P (A|B) = P (A),

then these events are called independent.

A and B are independent, if the probability of the event A is not influenced by the event B.

Theorem 4.2 From this definition, for the independent events A and B follows

P (A ∩B) = P (A) · P (B)

Beweis: Proof:

P (A|B) =
P (A ∩B)

P (B)
= P (A) ⇒ P (A ∩B) = P (A) · P (B)

Example 4.9 The probability for throwing two sixes with two dice is 1/36 if the dice are
independent, because

P (die 1 ≡ six) · P (die 2 ≡ six) =
1

6
· 1

6
=

1

36
= P (die 1 ≡ six ∩ die 2 ≡ six),

whereby the last equation applies only if the two dice are independent. If for example by
magic power die 2 always falls like die 1, it holds

P (die 1 ≡ six ∩ die 2 ≡ six) =
1

6
.

4.4.4 The Bayes Formula

Since equation (4.7) is symmetric in A and B, one can also write

P (A|B) =
P (A ∩B)

P (B)
as well as P (B|A) =

P (A ∩B)

P (A)
.

Rearranging by P (A ∩B) and equating results in the Bayes formula

P (A|B) =
P (B|A) · P (A)

P (B)
.

A very reliable alarm system warns at burglary with a certainty of 99%. So, can we infer
from an alarm to burglary with high certainty?
No, because if for example P (A|B) = 0.99, P (A) = 0.1, P (B) = 0.001 holds, then the
Bayes formula returns:

P (B|A) =
P (A|B)P (B)

P (A)
=

0.99 · 0.001

0.1
= 0.01.
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4.5 Discrete Distributions

Definition 4.9 A random variable, which range of values is finite or countably infinite is
called discrete random variable.

Example 4.10 Throwing a die, the number X is a discrete random variable with the values
{1, 2, 3, 4, 5, 6}, this means in the example it holds x1 = 1, . . . , x6 = 6. If the die does not
prefer any number, then

pi = P (X = xi) = 1/6,

this means the numbers are uniformly distributed. The probability to throw a number ≤ 5
is

P (X ≤ 5) =
∑
i:xi≤5

pi = 5/6.

In general, one defines

Definition 4.10 The function, which assigns a probability pi to each xi of the random
variable X is called the discrete density function of X.

Definition 4.11 For any real number x, a defined function

x 7→ P (X ≤ x) =
∑
i:xi≤x

pi

is called distribution function of X.

Such as the empirical distribution function, P (X ≤ x) is a monotonically increasing step
function. Analogous to the mean value and variance of samples are the following definitions.

Definition 4.12 The number
E(X) =

∑
i

xipi

is called expected value. The variance is given by

V ar(X) := E((X − E(X))2) =
∑
i

(xi − E(X))2pi

whereby
√
V ar(x) is called standard deviation.

It is easy to see that V ar(X) := E(X2)− E(X)2 (exercise).
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4.5.1 Binomial Distribution

Let a player’s scoring probability at penalty kicking be = 0.9. The probability always to
score at 10 independent kicks is

B10,0.9(10) = 0.910 ≈ 0.35.

It is very unlikely that the player scores only once, the probability is

B10,0.9(1) = 10 · 0.19 · 0.9 = 0.000000009

We might ask the question, which amount of scores is the most frequent at 10 kicks.

Definition 4.13 The distribution with the density function

Bn,p(x) =
(
n
x

)
px(1− p)n−x

is called binomial distribution.

Thus, the binomial distribution indicates the probability that with n independent tries of a
binary event of the probability p the result will be x times positive. Therefore, we obtain

B10,0.9(k) =
(
n
k

)
0.1k · 0.9n−k

The following histograms show the densities for our example for p = 0.9 as well as for p = 0.5.
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For the binomial distribution it holds

E(X) =
n∑
x=0

x ·
(
n
x

)
px(1− p)n−x = np

and
V ar(X) = np(1− p).
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4.5.2 Hypergeometric Distribution

Let N small balls be placed in a box. K of them are black and N −K white. When drawing
n balls, the probability to draw x black is

HN,K,n(x) =

(
K
x

)(
N −K
n− x

)
(
N
n

) .

The left of the following graphs shows H100,30,10(x), the right one HN,0.3N,10(x). This cor-
responds to N balls in the box and 30% black balls. It is apparent, that for N = 10 the
density has a sharp maximum, which becomes flatter with N > 10.
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As expected, the expected value of the hypergeometric distribution is

E(X) = n · K
N
.

4.6 Continuous Distributions

Definition 4.14 A random variable X is called continuous, if its value range is a subset
of the real numbers and if for the density function f and the distribution function F it
holds

F (x) = P (X ≤ x) =

∫ x

−∞
f(t)dt.

With the requirements P (Ω) = 1 and P (∅) = 0 (see def. 4.6) we obtain

lim
x→−∞

F (x) = 0 sowie lim
x→∞

F (x) = 1.

4.6.1 Normal Distribution

The most important continuous distribution for real applications is the normal distribu-
tion with the density

ϕµ,σ(x) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
.
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Theorem 4.3 For a normally distributed variable X with the density ϕµ,σ it holds E(X) =
µ and V ar(X) = σ2.

For µ = 0 and σ = 1 one obtains
the standard normal distribu-
tion ϕ0,1. With σ = 2 one ob-
tains the flatter and broader den-
sity ϕ0,2.

ϕ0,1(x)

ϕ0,2(x)

-4 -2 2 4

0.1

0.2

0.3

0.4

Example 4.11 Let the waiting times at a traffic light on a country road at lower traffic be
uniformly distributed. We now want to estimate the mean waiting time by measuring the
waiting time T 200 times.

The empirical frequency of the
waiting times is shown opposite
in the image. The mean value (•)
lies at 60.165 seconds. The fre-
quencies and the mean value in-
dicate a uniform distribution of
times between 0 und 120 sec.

20 40 60 80 100 120
Wartezeit 
 t [ sec]

2
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8
Haeufigkeiten der Wartezeiten (40 Klassen)

Due to the finiteness of the sample, the mean value does not lie exactly at the expected
value of 60 seconds. We now might ask the question, if the mean value is reliable, more
precise with what probability such a measured mean differs from the expected value by
a certain deviation. This will be investigated regarding the mean value from 200 times as
random variable while recording a sample for the mean value. For example, we let 200 people
independently measure the mean value from 200 records of the waiting time at a traffic light.
We obtain the following result:

The empirical density function
of the distribution of the mean
value t̄ shows a clear maximum
at t = 60 seconds while steeply
sloping at the borders at 0 and
120 seconds. It looks like a
normal distribution.
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The kind of relation between the distribution of the mean value and the normal distribution
is shown by the following theorem:
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Theorem 4.4 (Central Limit Theorem) If X1, X2, . . . , Xn are independent identically
distributed random variables with σ(Xi) <∞ and

Sn = X1 + . . .+Xn,

then Sn tends (for n → ∞) to a normal distribution with the expected value nE(X1) and
the standard deviation of

√
nσ. It holds

lim
n→∞

sup{|Sn(x)− ϕnE(X1),
√
nσ(X1)(x)| : x ∈ R} = 0.

This theorem has some important conclusions:

• The sum of independent identically distributed random variables asymptotically tends
to a normal distribution.

• The mean of the n independent measurements of a random variable is approximately
normally distributed. The approximation holds better, the more measurements are
made.

• The standard deviation of a sum X1 + . . . + Xn of identically distributed random
variables is equal to

√
nσ(X1).

Example 4.12

The following diagram shows the (exact) distribution of the mean calculated from n i.i.d.
(independent identically distributed) discrete variables, each uniformly distributed: p(0) =
p(1) = p(2) = p(3) = p(4) = 1/5.
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p
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x

Distribution of mean of uniform i.i.d. var.
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n=3
n=4

With the help of the central limit theorem we now want to determine the normal distribution
of the mean value from example 4.11 in order to compare it with the empirical density of
the mean value. The mean value t̄n after n time measurements is

t̄n =
1

n

n∑
i=1

ti.

Following theorem 4.4, the sum
∑n

i=1 ti is normally distributed and has the density

ϕnE(X1),
√
nσ(x) =

1√
2π
√
nσ

exp

(
−(x− nE(T ))2

2nσ2

)
The mean value t̄n has the density ϕE(T ), σ√

n
. 5 The variance σ2 of the uniform distribution

5This is given by the following, easy to proof property of the variance: V ar(X/n) = 1/n2V ar(X).
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is still missing.

Definition 4.15 The density of the uniform distribution over the interval (a,b)
(also called rectangular distribution) is

f(x) =

{
1
b−a if a ≤ x ≤ b

0 if sonst

One calculates

E(X) =
1

b− a
∫ b

a

x dx =
a+ b

2
(4.1)

V ar(X) = E(X2)− E(X)2 =
1

b− a
∫ b

a

x2 dx−
(
a+ b

2

)2

=
(b− a)2

12
(4.2)

Therefore, for the example one calculates

σ√
n

=
(b− a)√

12n
=

120√
12 · 200

=
√

6

Thus, the density of the mean value of the traffic light waiting times should be approximated
well by ϕ60,

√
6 as it can be seen in the following image.

Density function of the dis-
tribution of the mean value
with the density of the nor-
mal distribution ϕ60,

√
6.

55 60 65 70

0.025

0.05

0.075

0.1

0.125

0.15

Since we now know the density of the mean value, it is easy to specify a symmetric interval
in which the mean value (after our 200 measurements) lies with a probability of 0.95. In the
image above (ϕ60,

√
6) we have to determine the two points u1 and u2, which behave

P (u1 ≤ t̄ ≤ u2) =

∫ u2

u1

ϕ60,
√

6(t) dt = 0.95

Because of ∫ ∞
−∞

ϕ60,
√

6(t) dt = 1

it must behave ∫ u1

−∞
ϕ60,

√
6(t) dt = 0.025 und

∫ u2

−∞
ϕ60,

√
6(t) dt = 0.975.
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Graphically, we can find the two points u1, u2, searching for the x values to the level 0.025
and 0.975 in the graph of the distribution function of the normal distribution

Φ60,
√

6(x) = P (X ≤ x) =

∫ x

−∞
ϕ60,

√
6(t) dt

From the image on the op-
posite we read out

u1 ≈ 55.2, u2 ≈ 64.8.

56 58 60 62 64 66

0.2

0.4

0.6

0.8

1

0.025

0.975

u1 u2

We now know the following: After our sample of 200 time measurements the expexted value
of our waiting time t lies in the interval [55.2, 64.8] with a probability of 0.95.6 This interval
is called the confidence interval to the level 0.95.
In general, the confidence interval [u1, u2] to the level 1 − α has the following meaning.
Instead of estimating a paramater Θ from sample measurements, we can try to determine
an interval, that contains the value of Θ with high probability. For a given number α (in the
example above, α was 0.05) two numbers u1 and u2 are sought which behave

P (u1 ≤ Θ ≤ u2) = 1− α.

Not to be confused with the confidence interval are the quantiles of a distribution.

Definition 4.16 Let X be a continuous random variable and γ ∈ (0, 1). A value xγ is
called γ-quantile, if it holds

P (X ≤ xγ) =

∫ xγ

−∞
f(t) dt = γ.

The 0.5 quantile is called median.

4.7 Exercises

Exercise 4.1

6 This result is only exact under the condition that the standard deviation σ of the distribution of t is
known. If σ is unknown too, the calculation is more complex.
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a) Show that the arithmetic mean x̄ =
1

n

n∑
i=1

xi minimizes the sum of the squared distances

n∑
i=1

(xi − x)2.

b) Show that the median

x̃ =

{
xn+1

2
if n odd

1
2

(
xn

2
+ xn+1

2

)
if n even

minimizes the sum of the absolute values of the distances
n∑
i=1

|xi−x|. (Hint: consider by

an example how
n∑
i=1

|xi − x| is going to change if x deviates from the median.)

Exercise 4.2 As thrifty, hard-working Swabians we want to try to calculate whether the
German lottery is worth playing. In German lottery, 6 balls are drawn out of 49. The 49
balls are numbered from 1-49. A drawn ball is not put back into the pot. In each lottery
ticket field, the player chooses 6 numbers out of 49.

a) Calculate the number of possible draws in the lottery (6 of 49 / saturday night lottery),
which result in having (exactly) three correct numbers. Then, what is the probability
to have three correct numbers?

b) Give a formula for the probability of achieving n numbers in the lottery.
c) Give a formula for the probability of achieving n numbers in the lottery with the bonus

number (the bonus number is determined by an additionally drawn 7th ball).
d) What is the probability that the (randomly) drawn ”super number” (a number out of
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}) equals the last place of the serial number of the lottery ticket?

e) Calculate the average lottery prize if the following sums are payed out (s.n.: super
number, b.n.: bonus number):

Winning class I II III IV V VI VII
Correct numbers 6 with s.n. 6 without s.n. 5 with b.n. 5 4 3 with b.n. 3
Prize (6.12.1997) 4.334.833,80 1.444.944,60 135.463,50 10.478,20 178,20 108,70 11,00
Prize (29.11.1997) 12.085.335,80 1.382.226,80 172.778,30 12.905,90 192,30 82,30 12.10
Prize (22.11.1997) 7.938.655,30 3.291.767,70 141.075,70 11.018,40 157,50 79,20 10,10
Prize (15.11.1997) 3.988.534,00 2.215.852,20 117.309,80 9.537,30 130,70 60,80 8,70
Prize (8.11.1997) 16.141.472,80 7.288.193,60 242.939,70 14.798,30 190,10 87,70 10,90

Exercise 4.3 Show that for the variance the following rule holds

V ar(X) = E(X2)− E(X)2.

Exercise 4.4

a) For pairwise inconsistent events A and B it holds P (A ∪ B) = P (A) + P (B). (Hint:
consider, how the second part of definition 10.6 could be applied on (only) 2 events.)

b) P (∅) = 0, i.e. the impossible event has the probability 0.
c) For two complementary events A and Ā it holds P (A) + P (Ā) = 1.
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d) For arbitrary events A and B it holds P (A ∪B) = P (A) + P (B)− P (A ∩B).
e) For A ⊆ B it holds P (A) ≤ P (B).

Exercise 4.5 Give an example for an estimator with 0 variance.

Exercise 4.6 Show that for the sample variance it holds:

s2 =
1

n− 1

n∑
j=1

(xj − µ)2 − n

n− 1
(x̄− µ)2.



Chapter 5

Numerical Mathematics
Fundamentals

5.1 Arithmetics on the Computer

5.1.1 Floating Point Numbers

The set of floating point numbers to base β, with t fractional digits and exponents between
m and M , can be formally defined by

F (β, t,m,M) = {d : d = ±.d1d2 . . . dt · βe} ∪ {0} ⊂ Q

with

β ∈ N
0 ≤ di ≤ β − 1 di : digits, d1 6= 0

d1, d2, . . . , dt : mantissa

t : mantissa length

e : exponent with m ≤ e ≤M m,M ∈ Z

The floating point number ±.d1d2 . . . dt · βe has the value

d = ± (d1β
e−1 + d2β

e−2 + · · ·+ dtβ
e−t)

Example 5.1 Let β = 2 and t = 3 given, that means we consider three-digit numbers in
the binary system. The number 0.101 · 221 has the value

0.101 · 221 = 1 · 220 + 0 · 219 + 1 · 218 = 220 + 218.

In the decimal system with β = 10 we need a six-digit mantissa (t = 6), to represent this
number:

220 + 218 = 1310720 = 0.131072 · 107.

5.1.1.1 Distribution of F (β, t,m,M)

|F (β, t,m,M)| = 2︸︷︷︸
±

(M −m+ 1)︸ ︷︷ ︸
exponents

(βt − β(t−1))︸ ︷︷ ︸
mantissas

+ 1︸︷︷︸
0
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Example 5.2 F (2, 3,−1, 2)

with the upper formula we get:

|F (2, 3,−1, 2)| = 2(4)(23 − 22) + 1 = 33

⇒ there are only the “0“ and 32 different numbers between

±0.100 · 2−1, the number with smallest absolute value
±0.111 · 22, the number with largest absolute value

The elements ≥ 0 of F(2,3,-1,2) are

0;
1

4
,

5

16
,
3

8
,

7

16
;
1

2
,
5

8
,
3

4
,
7

8
; 1,

5

4
,
3

2
,
7

4
; 2,

5

2
, 3,

7

2

Distribution on the number line:

21 3 41/20 1/4

gap at zero

problems:

� Exponent overflow

� Exponent underflow

� Round-off error

5.1.2 Round-off Errors

5.1.2.1 Round-off and Truncation Errors (absolute)

Definition 5.1 flc, flr :
[−0.α . . . α · βM , 0.α . . . α · βM] → F (β, t,m,M) with α =

β − 1

Round-off: x 7→ flr(x) = nearest neighbor of x in F (β, t,m,M)

Truncate: x 7→ flc(x) = max {y ∈ F (β, t,m,M)|y ≤ x}

It holds:

absolute value Round-off Errors = |flr(x)− x| ≤ 1

2
βe−t

absolute value Truncation Error = |flc(x)− x| < βe−t

Example 5.3 β = 10︸ ︷︷ ︸
10er System

,

2stellige Mantisse︷ ︸︸ ︷
t = 2 , e = 3︸ ︷︷ ︸

Exponent

x = 475
flr(x) = 0.48 · 103 ← round-off
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flc(x) = 0.47 · 103 ← truncate

|flr(x)− x| = |480− 475| = 5 ≤ 1

2
· 103−2 = 5

|flc(x)− x| = |470− 475| = 5 < 103−2 = 10

5.1.2.2 Round-off and Truncation Errors (relative)

|flr(x)− x|
|x| ≤ 1

2
β1−t

|flc(x)− x|
|x| < β1−t

Example 5.4 relative round-off error

|480− 475|
|475| =

1

95
≤ 1

2
·10−1 =

1

20

→ upper bound for the smallest
number!

|110− 105|
|105| =

1

21
<

1

20

For fixed number of digits, the rel-
ative error gets bigger for smaller
numbers!

Example 5.5 t=3, β = 10

110 · 105 = 11550 6= 11600 = flr(11550)

Achtung:
Field axioms violated!
F (β, t,m,M) is not closed w.r.t. multiplication.

Let ? ∈ {+,−, ·, div}

∃x, y ∈ F (β, t,m,M) : flr(x ? y) 6= x ? y

5.1.3 Cancellation

Example 5.6 Let β = 10 and t = 8

a = 0.1 · 109

b = 0.1 · 101

c = −0.1 · 109

a+ b+ c = 0.1 · 101 = 1

flr (flr (a+ b) + c) = 0.1 · 109 − 0.1 · 109 = 0

flr (a+ flr (b+ c)) = 0.1 · 109 − 0.1 · 109 = 0

flr (flr (a+ c) + b) = 0 + 0.1 · 101 = 1

⇒ Associative law is not valid in F (β, t,m,M)
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5.1.4 Condition Analysis

Example 5.7 Solve the linear system

x+ ay = 1

ax+ y = 0

x− a2x = 1

x =
1

1− a2
für a 6= ±1

a = 1.002 = exact value
ã = 1.001 = measurement or rounding-off error

relative error:

∣∣∣∣ ã− aa
∣∣∣∣ =

1

1002

solution:

x ≈ − 1

0.004
≈ −249.75

x̃ ≈ − 1

0.002
≈ −499.75

⇒ relative error

∣∣∣∣ x̃− xx
∣∣∣∣ ≈ ∣∣∣∣ −250

249.75

∣∣∣∣ = 1.001 (100% error)

See Figure 5.1.

a

x

-1 1

x

a

Figure 5.1: Gain of the input error under ill-condition.

Matrix A =

(
1 a
a 1

)
is singular for a = 1, i.e.

∣∣∣∣ 1 1
1 1

∣∣∣∣ = 0
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Definition 5.2 Let P be the problem to calculate the function f(x) with given input x.
The condition number Cp is the factor by which a relative error ∆x

x
in the input f will be

increased, i.e. ∣∣∣∣f(x+ ∆x)− f(x)

f(x)

∣∣∣∣ = Cp

∣∣∣∣∆xx
∣∣∣∣

It holds:

Cp =

∣∣∣∣(f(x+ ∆x)− f(x))/f(x)

∆x/x

∣∣∣∣ ≈ ∣∣∣∣f ′(x)

f(x)
x

∣∣∣∣
Example 5.8 Calculation of Cp

x = f(a) =
1

1− a2
f ′(a) =

2a

(1− a2)2

Cp ≈
∣∣∣∣ 2a

(1− a2)2
(1− a2)a

∣∣∣∣ =

∣∣∣∣ 2a2

1− a2

∣∣∣∣ = 501.5

direct calculation (see above): Cp ≈ 1002
Factor 2 due to linearization of f in a!

Definition 5.3 A problem is ill-conditioned (well-conditioned) if Cp � 1
(Cp < 1 oder Cp ≈ 1)

Note: Cp depends on the input data!

5.2 Numerics of Linear Systems of Equations

see [1]

5.2.1 Solving linear equations (Gauß’ method)

Linear System Ax = b:

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
an1x1 + an2x2 + · · · + annxn = bn

aij ∈ R n ≥ 1

Questions:

� Is L solvable?

� Is there a unique solution?

� How to calculate the solutions?

� Is there an efficient algorithm?
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5.2.1.1 Gaußian Elimination Method

a11x1 + a12x2 + · · · + a1nxn = b1

a22x2 + · · · + a2nxn = b2

akkxk + · · · + akjxj + · · · + aknxn = bk
...

...
...

aikxk + · · · + aijxj + · · · + ainxn = bi
...

...
...

ankxk + · · · + anjxj + · · · + annxn = bn

The algorithm:

for k=1,...,n-1

search a_mk with |a_mk|=max{ |a_lk| : l >= k }

if a_mk=0 print "singulaer"; stop

swap lines m and k

for i=k+1,...,n

q_ik:=a_ik/a_kk

for j=k+1,...,n

a_ij:=a_ij - q_ik*a_kj

end

b_i:=b_i - q_ik*b_k

end

end

Theorem 5.1 Complexity: The number of operations of the Gaußian elimination for large
n is approximately equal to 1

3
n3.

Proof:

1. step:

lines︷ ︸︸ ︷
(n− 1)

columns︷ ︸︸ ︷
(n− 1 + 2) operations

k-ter step: (n− k)(n− k + 2) operations

total:

T (n) =
n−1∑
k=1

(n− k)(n− k + 2)
l:=n−k︷︸︸︷

=
n−1∑
l=1

(l(l + 2))

=
n−1∑
l=1

(l2 + 2l) =
n3

3
− n2

2
+
n

6
+ n(n− 1)

=
n3

3
+
n2

2
− 5

6
n

⇒ for large n:
n3

3
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Example 5.9 Computer with 1 GFLOPS

n T (n)
10 1/3 · 103 · 10−9 sec ≈ 0.3 µsec

100 1/3 · 1003 · 10−9 sec ≈ 0.3 msec
1000 1/3 · 10003 · 10−9 sec ≈ 0.3 sec

10000 1/3 · 100003 · 10−9 sec ≈ 300 sec = 5 min

Problems/Improvements:

1. long computing times for large n

� better algorithms

T (n) = C · n2.38 instead of
1

3
n3

� Iterative method (Gauß-Seidel)

2. Round-off error

� complete pivoting

� Gauß-Seidel

Applications:

� Construction of curves through given points

� Estimation of parameters (least squares)

� Linear Programming

� Computer graphics, image processing (e.g. computer tomography)

� Numerical solving of differential equations

5.2.1.2 Backward Substitution

After n-1 elimination steps:

A′x = b with A′ =


a′11 a′12 · · · a′1n
0 a′22 · · · a′2n

0 0
. . .

...
0 0 0 a′nn


Calculation of x1, . . . , xn:

xn =
bn
a′nn

xn−1 =
bn−1 − a′n−1,nxn

a′n−1,n−1

General:
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xi =
bi −

∑n
k=i+1 a

′
ikxk

a′ii

i = n, n− 1, . . . , 1

Runtime:

� Divisions: n

� Number of additions and multiplications:

n∑
i=1

(i− 1) =
n−1∑
i=1

i =
1

2
n(n− 1) ≈ 1

2
n2

⇒ Substitution is much faster than elimination!

5.2.1.3 Backward Elimination

A slight variant of the backward substitution is the backward elimination, where the upper
right triangle of the matrix is being substituted similarly to the Gauß elimination. This
variant is called Gauß-Jordan method. One application of this method is the computation
of inverse matrices.

Theorem 5.2 Correctness: The Gaußian Method results in a unique solution (x1, . . . , xn)
if and only if the linerar system L has a unique solution (x1, . . . , xn).

Proof: as exercise

5.2.2 Iterative improvement of the solution

Let x̄ the calculated solution of Ax = b with the Gauß method. In general Ax̄ = b− r with
r 6= 0 (r: residual vector) because of x = x̄+ ∆x.

⇒ Ax̄ = A(x−∆x) = b− r
A ·∆x = r

With this equation the correction ∆x̄ can be calculated. ⇒ better approximation for x:

x(2) = x̄+ ∆x̄

Iterative Method:

x(1) := x̄

for n = 1, 2, 3, . . .:

r(n) = b− Ax(n)

calculate ∆x(n) nach A∆x(n) = r(n)

x(n+1) = x(n) + ∆x(n)
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Note:

1. usually (A not very ill-conditionated) very few iterations (≈ 3) necessary.

2. Solving A∆x(n) = r(n) is time-consuming: O(1
3
n3). With LU decomposition (see 5.2.3)

of A, A∆x(n) = r(n) can be solved in O(n2) steps.

3. Must a system of equations be solved for more than one right hand side, all solutions
will be calculated simultaneously (elimination necessary only once!)

5.2.3 LU-Decomposition

The Gaußian elimination (see algorithm) multiplies row i with the factor qik := aik/akk for
the elimination of each element aik in the k-th column below the diagonal. If we write all
calculated qik in a lower triangular matrix, in which we add ones in the diagonal, we get

L :=


1 0 . . . . . . 0

q21 1 0
...

q31 q32 1
. . .

...
...

...
. . . . . . 0

qn1 qn2 . . . qnn−1 1

 .

Furthermore, let

U := A′ =


a′11 a′12 · · · a′1n
0 a′22 · · · a′2n
...

. . . . . .
...

0 . . . 0 a′nn


the upper triangular matrix after the elimination.

Theorem 5.3 Then L · U = A holds and the solution x of the system Ax = b for any right
hand side b can be calculated by solving the equation L · c = b for c and solving U · x = c
for x.

The system L·c = b is solved by forward substitution and U ·x = c by backward substitution.

Proof: We will show that L · U = A. Then obviously it holds

A · x = L · U · x = b.

Now we write L · U = A in detail:

L · U =


1 0 . . . . . . 0

q21 1 0
...

q31 q32 1
. . .

...
...

...
. . . . . . 0

qn1 qn2 . . . qnn−1 1

 ·


a′11 a′12 · · · a′1n
0 a′22 · · · a′2n
...

. . . . . .
...

0 . . . 0 a′nn

 = A
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We now apply the Gaußian elimination on both sides and get 1 0
. . .

0 1

 · U = U

Thus LU = A. Because of the associativity of matrix multiplication only L has to be elimi-
nated on the left side. �

Exercise 5.1 How could you factor A into a product UL, upper triangular times lower
triangular? Would they be the same factors as in A = LU?

5.2.4 Condition Analysis for Matrices

Ax = b with A : Matrix (n× n) and x, b ∈ Rn

What is the Norm of a matrix?

Vector Norm:

Definition 5.4 (p-Norm)

∀x ∈ Rn : ‖x‖p = (|x1|p + |x2|p + · · ·+ |xn|p)
1
p

1 ≤ p <∞

Theorem 5.4 ‖x‖p is a norm, i.e. it has the properties:

� ∀x 6= 0 : ‖x‖p > 0 ; ‖x‖p = 0⇔ x = 0

� ∀α ∈ R : ‖αx‖p = |α| · ‖x‖p
� ∀x, y ∈ Rn : ‖x+ y‖p ≤ ‖x‖p + ‖y‖p

Lemma 5.1 (Hölder inequality) For real numbers p, q > 1 with 1
p

+ 1
q

= 1 and vectors
x ,y ∈ Rn we have

‖xy‖1 ≤ ‖x‖p‖y‖q.

Proof: Since ‖xy‖1 =

∣∣∣∣∣
n∑
i=1

xiyi

∣∣∣∣∣ ≤
n∑
i=1

|xiyi| it remains to prove

n∑
i=1

|xiyi| ≤
(

n∑
i=1

|xi|p
) 1

p
(

n∑
i=1

|yi|q
) 1

q

.

For real numbers a, b > 0 we have (proof as exercise)

ab ≤ ap

p
+
bq

q
,
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which we apply now to get

n∑
i=1

|xiyi|
‖x‖p‖y‖q =

n∑
i=1

|xi||yi|
‖x‖p‖y‖q ≤

n∑
i=1

(
1

p

|xi|p
‖x‖pp +

1

q

|yi|q
‖y‖qq

)
=

n∑
i=1

1

p

|xi|p
‖x‖pp +

n∑
i=1

1

q

|yi|q
‖y‖qq =

1

p‖x‖pp
n∑
i=1

|xi|p +
1

q‖y‖qq
n∑
i=1

|yi|q =
1

p
+

1

q
= 1

�

Proof of proposition 3 in Theorem 5.4: For the cases p = 1 and p = ∞ see exercises.
For 1 < p <∞:

|xi + yi|p = |xi + yi||xi + yi|p−1 ≤ (|xi|+ |yi|)|xi + yi|p−1 = |xi||xi + yi|p−1 + |yi||xi + yi|p−1

Summation yields

n∑
i=1

|xi + yi|p ≤
n∑
i=1

|xi||xi + yi|p−1 +
n∑
i=1

|yi||xi + yi|p−1. (5.1)

Application of the Hölder inequality to both terms on the right hand sides gives

n∑
i=1

|xi||xi + yi|p−1 ≤
(

n∑
i=1

|xi|p
) 1

p
(

n∑
i=1

(|xi + yi|p−1)q

) 1
q

and
n∑
i=1

|yi||xi + yi|p−1 ≤
(

n∑
i=1

|yi|p
) 1

p
(

n∑
i=1

(|xi + yi|p−1)q

) 1
q

what we substitute in Equation 5.1 to obtain

n∑
i=1

|xi + yi|p ≤
( n∑

i=1

|xi|p
) 1

p

+

(
n∑
i=1

|yi|p
) 1

p

( n∑
i=1

|xi + yi|p
) 1

q

.

In the rightmost factor we used (p− 1)q = p. Now we divide by the rightmost factor, using
1
p

= 1− 1
q

and get the assertion(
n∑
i=1

|xi + yi|p
) 1

p

≤
(

n∑
i=1

|xi|p
) 1

p

+

(
n∑
i=1

|yi|p
) 1

p

.

�

Lemma 5.2
‖x‖∞ := max

1≤i≤n
|xi| = lim

p→∞
‖x‖p

‖ ‖∞is called maximum norm

In the following let ‖x‖ = ‖x‖∞

maximum norm:
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Definition 5.5 For any vector norm ‖ ‖ the canonical matrix norm is defined as follows:

‖A‖ = max
x 6=0

‖Ax‖
‖x‖

Lemma 5.3 The matrix norm is a norm and for a n×m matrix A it holds

‖A‖∞ = max
1≤i≤n

m∑
j=1

|aij|

‖Ax‖ ≤ ‖A‖ · ‖x‖
‖AB‖ ≤ ‖A‖ · ‖B‖

Condition of a matrix: Consequence of errors in the matrix elements of A or the right
hand side b on errors in the solution x.

1. Error in b:

b̃ = b+ ∆b

⇒ x̃ = x+ ∆x

⇒ A(x+ ∆x) = b+ ∆b

⇒ ∆x = A−1∆b

⇒ ‖∆x‖ = ‖A−1∆b‖ ≤ ‖A−1‖ · ‖∆b‖

b = Ax ⇒ ‖b‖ ≤ ‖A‖ · ‖x‖ ⇒ 1

‖x‖ ≤
‖A‖
‖b‖

⇒ ‖∆x‖‖x‖ ≤ ‖A‖ · ‖A
−1‖‖∆b‖‖b‖

‖∆x‖
‖x‖
‖∆b‖
‖b‖

≤ CA

with CA = ‖A‖ · ‖A−1‖

CA: condition number of A

2. Error in A:

(A+ ∆A)(x+ ∆x) = b

x+ ∆x = (A+ ∆A)−1b = (A+ ∆A)−1Ax

∆x =
(
(A+ ∆A)−1A− I)x

= (A+ ∆A)−1 (A− (A+ ∆A))x

= (A+ ∆A)−1∆Ax
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⇒ ‖∆x‖ ≤ ‖(A+ ∆A)−1‖ · ‖∆A‖ · ‖x‖

‖∆x‖
‖x‖ ≤ ‖(A+∆A)−1‖ ·‖A‖ · ‖∆A‖‖A‖ ≈ CA

‖∆A‖
‖A‖ ≈ ‖A

−1‖ ·‖∆A‖

CA analogous to Cp : Cp =

∣∣∣∣f ′(x)

f(x)
x

∣∣∣∣
Example 5.10 (

1 a
a 1

)
︸ ︷︷ ︸

A

x =

(
1

0

)
︸︷︷︸

b

A−1 =
1

1− a2

(
1 −a
−a 1

)
‖A‖ = 1 + a, ‖A−1‖ =

∣∣∣∣ 1 + a

1− a2

∣∣∣∣ =

∣∣∣∣ 1

1− a
∣∣∣∣ for a > 0

⇒ CA = ‖A‖ · ‖A−1‖ =

∣∣∣∣(1 + a)2

1− a2

∣∣∣∣ =

∣∣∣∣1 + a

1− a
∣∣∣∣

a=1.002:

⇒ A =

(
1 1.002

1.002 1

)
∆A =

(
0 −0.001

−0.001 0

)
⇒ CA = 1001

‖∆A‖ = 0.001, ‖A‖ = 2.002

‖∆x‖
‖x‖

≤≈ 1001
0.001

2.002
= 0.5

5.3 Roots of Nonlinear Equations

given: nonlinear equation f(x) = 0

sought: solution(s) (root(s))

5.3.1 Approximate Values, Starting Methods

Draw the graph of f(x), value table

Example 5.11

f(x) =
(x

2

)2

− sinx

Table:
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x
Pi/2 Pi1 2

1

sin(x)

x

-0.6

1,9

21

f(x)

2
(x / 2)

Figure 5.2: Graph to find the start value.

x (x/2)2 sinx f(x)
1,6 0,64 0.9996 < 0
1.8 0.81 0.974 < 0
2.0 1.00 0.909 > 0

⇒ Root in [1.8; 2.0]
in general: if f continuous and f(a) · f(b) < 0⇒ f has a root in [a, b].

Interval bisection method

Requirements :

f : [a, b]→ R continuous and f(a) · f(b) < 0.

Without loss of generality f(a) < 0, f(b) > 0 (otherwise take −f(x))

x

yyyy

a=a0

b=b0m(k+1)

m(k+2)

mk

Figure 5.3: Root in the interval [a,b] can be determinated quickly by using the interval bisection
method..

Algorithm:

mk = 1
2
(ak−1 + bk−1)

(ak, bk) =

{
(mk, bk−1) if f(mk) < 0
(ak−1,mk) if f(mk) > 0

(Root found exactly if f(mk) = 0)!

Theorem 5.5 Let f : [a, b]→ R continuous with f(a) ·f(b) < 0. Then the interval bisection
method converges to a root x̄ of f . After n steps x̄ is determinated with a precision of b−a

2n
.
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For the proof of theorem 5.5 the following definition and theorem are required:

Definition 5.6 A sequence (an) is a Cauchy sequence, if:

∀ε > 0 : ∃N ∈ N : ∀n,m ≥ N : |am − an| < ε

Theorem 5.6 In R every Cauchy sequence converges.

Proof of theorem 5.5:

1. Speed of Convergence:
n-th step:

(bn − an) =
1

2
(bn−1 − an−1) = . . . =

1

2n
(b0 − a0) =

1

2n
(b− a).

2. Convergence:

x̄ = mn+1 ± 1

2
(bn − an) = mn+1 ± 1

2n+1
(b− a)

For m ≥ n+ 1 it holds

|am − an| ≤ bn − an =
1

2n
(b− a) < ε for large enough n.

⇒ (an), (bn) are Cauchy sequences ⇒ (an), (bn) converges with

lim
n→∞

an = lim
n→∞

bn = x̄

because of f(an) < 0 < f(bn) and continuity of f .

⇒ limn→∞ f(an) = f(x̄) ≤ 0
limn→∞ f(bn) = f(x̄) ≥ 0

}
f(x̄) = 0

Note:

1. for each step, the precision is doubled, respectively the distance to the solution halved.
Thus for each step, the precision is improved by a binary digit.
because of 10−1 ≈ 2−3.3 about 3.3 steps are necessary to improve the precision by a
decimal digit.
⇒ slow convergence! (Example: for 12-digits precision, about 40 steps required)

2. slow convergence, because only the sign of f is used, f(an), f(bn) is never used!
⇒ better methods use f(x), f ′(x), f ′′(x), . . .

3. interval bisection methods also applicable on discontinuous functions
⇒ Exercise

4. discrete variants of interval bisection:
Bisection Search (=efficient search method in ordered files)

T (n) ≈ log2(n) instead of T (n) ≈ n

with n=number of entries in the file.
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5. Why log2(n) steps?
Let n = b− a the number of entries in the file.

⇒ bk − ak ≈ 1

2k
(b− a) =

n

2k

Number of steps to bk − ak ≤ 1

⇒ n

2k
≤ 1⇒ 2k ≥ n⇒ k ≥ log2 n

6. interval bisection methods globally convergent!

5.3.2 Fixed Point Iteration

Goal: Solution of equations of the form

x = f(x) (Fixed Point Equation)

Iterative Solution:

x0 = a

xn+1 = f(xn) (n = 0, 1, 2, . . .)

Example 5.12 In Figure 5.4 the solution of the fixed point equation x = f(x) for various
functions f is shown graphically.

Definition 5.7 A function f : [a, b] → [a, b] ∈ R is called a contraction on [a,b], if a
(Lipschitz) constant L with 0 < L < 1 exists with |f(x)− f(y)| ≤ L|x− y| ∀x, y ∈ [a, b]

Lemma 5.4 If f : [a, b] → [a, b] is differentiable, then f is a contraction on [a, b] with
Lipschitz constant L if and only if holds:

∀x ∈ [a, b] : |f ′(x)| ≤ L < 1

Proof:
“→”: let |f(x)− f(y)| ≤ L|x− y| ∀x, y ∈ [a, b]

⇒ ∀x, y :
|f(x)− f(y)|
|x− y| ≤ L

⇒ lim
x→y

|f(x)− f(y)|
|x− y| = |f ′(y)| ≤ L

“←”: (more difficult ⇒ omitted)
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y

y=x

x
x0

f(x0)

y=f(x)

y

y=x

x

y=f(x)

x0

f(x0)

x0 x1 x2 x3

f(x0)

f(x1)

f(x2)
f(x3)

y

y=x

y=f(x)

x

y

y=x

x

y=f(x)

x0

f(x0)

Figure 5.4: two examples of divergent and convergent iterations.

y=x

x

y=f(x)

sqrt(2)

f(x)

a

Figure 5.5: .

Example 5.13

f(x) =
1

2

(
x+

a

x

)
f ′(x) =

1

2
− a

2x2

f ′(x) > −1
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1

2
− a

2x2
> −1

3

2
>

a

2x2

x >

√
a

3

a=2:

x >

√
2

3
≈ 0.817

f is a contraction on [
√

a
3

+ ε,∞] for ε > 0.

Theorem 5.7 Banach Fixed Point Theorem: Let f : [a, b] → [a, b] ⊂ R be a contrac-
tion. Then the following holds

1. f has exactly one fixed point s ∈ [a, b].

2. For any initial value x0 ∈ [a, b] fixed point iteration converges to s.

3. The cutoff error can be estimated by:

|s− xk| ≤ Lk−l

1− L |xl+1 − xl| for 0 ≤ l < k

For l = 0 we get

|s− xk| ≤ Lk

1− L |x1 − x0| (a priori estimation)

and for l = k − 1 :

|s− xk| ≤ L

1− L |xk − xk−1| (a posteriori estimation).

Proof:

|xk+1 − xk| = |f(xk)− f(xk−1)| ≤ L|xk − xk−1|
= L|f(xk−1)− f(xk−2)| ≤ L2|xk−1 − xk−2|
= . . .

= Lk−l|xl+1 − xl| for 0 ≤ l ≤ k

for l = 0:
|xk+1 − xk| ≤ Lk|x1 − x0|
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|xk+m − xk| = |xk+m−xk+m−1 + xk+m−1︸ ︷︷ ︸
=0

− . . .+ . . .︸ ︷︷ ︸
=0

−xk| =
∣∣∣∣∣
k+m−1∑
i=k

xi+1 − xi
∣∣∣∣∣

≤
k+m−1∑
i=k

|xi+1 − xi| ≤ Lk(Lm−1 + Lm−2 + . . .+ L+ 1)|x1 − x0|

= Lk
1− Lm
1− L |x1 − x0| → 0 für k →∞

⇒ (xk) Cauchy Sequence ⇒ (xk) converges

for s = limn→∞ xn we have f(s) = f(limn→∞ xn) = limn→∞ f(xn) = limn→∞ xn+1 = s.
Thus s is fixed point of f and s is unique, since for s1, s2 with s1 = f(s1), s2 = f(s2) it holds:

|s1 − s2| = |f(s1)− f(s2)| ≤ L|s1 − s2| because of L < 1⇒ s1 = s2

Error estimation see [12] p. 188

Example 5.14

f(x) =
1

2

(
x+

a

x

)
a = 5, x0 = 2

f contract on [2,∞] with L = 0.5.
Theorem 5.7 (3) with l = k − 1 :

|s− xk| ≤ L

1− L |xk − xk−1| (a posteriori estimation)

⇒ |
√

5− xk| ≤ 0.5

1− 0.5
|xk − xk−1| = |xk − xk−1|

n xn (xn − xn−1) ≥ (
√

5− xn)
0 2
1 2.25 0.25
2 2.2361111 0.0139
3 2.2360679779 0.000043
4 2.2360679775 0.00000000042

0.00000000042 (a posteriori)
0.031 (a priori)
Note:

Theorem 5.7 (3) gives estimation of the error without knowing the limit!

Example 5.15
f(x) = exp (−x) = x

f : A→ A, A = [0.5, 0.69]

L = max
x∈A
|f ′(x)| = max

x∈A
| − e−x|

= e−0.5 ≈ 0.606531 < 1
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y=x

x

f(x)

1

y=exp(-x)

Figure 5.6: .

k xk
0 0.55
1 0.577
2 0.562
3 0.570
4 0.565
...

...
12 0.56712420

...
...

20 0.56714309
21 0.56714340
22 0.56714323

Theorem 5.7 (3) with l = 0:

|s−xk| ≤ Lk

1− L |x1−x0| (a priori estimation)

Calculation of k, if |s− xk| ≤ ε = 10−6

k ≥
log
(
ε(1−L)
|x1−x0|

)
logL

≈ 22.3

Error after 12 steps:

a priori: |s− x12| ≤ 1.70 · 10−4

a posteriori: |s− x12| ≤ 8.13 · 10−5 (better!)

Result:

The iteration in the first example converges much faster than in the second example.

5.3.3 Convergence Speed and Convergence Rate

Definition 5.8 εk := xk − s is called cutoff error

Fixed Point Theorem (f contract):

|εk+1| = |xk+1 − s| = |f(xk)− f(s)| ≤ L|xk − s| = L|εk|
⇒ Error decreases in each step by factor L!

Theorem 5.8 If f : [a, b]→ [a, b] satisfies the conditions of Theorem 5.7 and is continuously
differentiable with f ′(x) 6= 0 ∀x ∈ [a, b], then it holds:

lim
k→∞

εk+1

εk
= f ′(s)
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Proof: as exercise
Conclusions:
εk+1 ≈ qεk with q := f ′(s) (convergence rate)
(xk) is called linear convergent with convergence rate |q|.
⇒ after m steps error εk+m ≈ 1

10
εk

m =?

εk+m ≈ qmεk = 10−1εk

⇒ m log10 |q| ≤ −1⇒ m ≥ −1

log10 |q|
|q| = |f ′(s)| 0.316 0.562 0.75 0.891 0.944 0.972

m 2 4 8 20 40 80

Theorem 5.9 Let f be contracting with f ′(s) = 0, ∀x ∈ [a, b]f ′′(x) 6= 0 and f ′′ continuous
on [a, b]. Then it holds:

lim
k→∞

εk+1

ε2
k

=
1

2
f ′′(s)

Conclusion:

for k →∞ : εk+1 ≈ pε2
k with p :=

1

2
f ′′(s)

⇒ quadratic convergence (convergence with order=2)
Correct number of digits is doubled in each step (if p ≈ 1), because

εk+1 = pε2
k ⇔ log εk+1 = log p+ 2 log εk

⇔ log εk+1

log εk
=

log p

log εk︸ ︷︷ ︸
≈0

+2

Example 5.16
εk+1 = 10−8, εk = 10−4

Proof of Theorem 5.9:

εk+1 = xk+1 − s = f(xk)− f(s) = f(s+ εk)− f(s)

= f(s) + εkf
′(s)︸ ︷︷ ︸

=0

+
1

2
ε2
kf
′′(s+ θkεk)− f(s)

=
1

2
ε2
kf
′′(s+ θkεk) with 0 < θk < 1

because of f ′′(x) 6= 0 ∀x ∈ [a, b] and x0 6= s it holds:

∀k > 0 : xk − s = εk 6= 0

⇒ εk+1

ε2
k

=
1

2
f ′′(s+ θkεk) k = 0, 1, 2, . . .

lim
k→∞

εk+1

ε2
k

=
1

2
lim
k→∞

f ′′(s+ θkεk) =
1

2
f ′′(s+ lim

k→∞
(θkεk)︸ ︷︷ ︸
=0

) =
1

2
f ′′(s)
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5.3.4 Newtons method

sought: Solutions of f(x) = 0

f(x)

x
x(k)x(k+1)

Figure 5.7: .

The Tangent: T (x) = f(xk) + (x− xk)f ′(xk)
T (xk+1) = 0⇒ f(xk) + (xk+1 − xk)f ′(xk) = 0

⇒ (xk+1 − xk)f ′(xk) = −f(xk)

xk+1 = xk − f(xk)

f ′(xk)
(5.2)

k = 0, 1, 2, . . .

with F (x) := x− f(x)

f ′(x)
is (5.2) for the fixed point iteration

xk+1 = F (xk) with F (s) = s (fixed point)

Theorem 5.10 Let f : [a, b] → R three times continuously differentiable and ∃s ∈ [a, b] :
f(s) = 0, as well ∀x ∈ [a, b] : f ′(x) 6= 0 and f ′′(s) 6= 0. Then there exists an interval
I = [s − δ, s + δ] with δ > 0 on which F : I → I is a contraction. For each x0,(xk) is
(according to 5.2) quadratically convergent.

Proof:

1. F is a contraction in the area of s, i.e. |F ′(x)| < 1 fors− δ ≤ x ≤ s+ δ

F ′(x) = 1− f ′(x)2 − f(x)f ′′(x)

f ′(x)2
=
f(x)f ′′(x)

f ′(x)2
(5.3)

⇒ F ′(s) =
0f ′′(s)

f ′(s)2
= 0.
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Because of the continuity of F ′, δ > 0 exists with

F ′(x) ≤ L < 1 ∀x ∈ [s− δ, s+ δ] =: I

⇒ F is a contraction in I
⇒ lim

k→∞
xk = s

2. Order of Convergence:

Application of Theorem 5.9 on F : F ′(s) = 0

from (5.3) we get:

F ′′(x) =
f ′(x)2f ′′(x) + f(x)f ′(x)f ′′′(x)− 2f(x)f ′′(x)2

f ′(x)3

⇒ F ′′(s) =
f ′(s)2f ′′(s)

f ′(s)3
=
f ′′(s)

f ′(s)

According to Theorem 5.9 ,(xk) is quadratically convergent on I if and only if f ′′(s) 6= 0.
(otherwise even higher order of convergence)

5.4 Exercises

Exercise 5.2 Prove the triangular inequality for real numbers, i.e. that for any two real
numbers x and y we have |x+ y| ≤ |x|+ |y|.
Exercise 5.3
a) Calculate the p-norm ‖x‖p of the vector x = (1, 2, 3, 4, 5) for the values of p = 1, 2, . . . , 50.

b) Draw the unit circles of various p-norms in R2 and compare them.

c) Prove that the p-norm is a norm for p = 1,∞.

d) Show that for x ≥ 0 and 0 < p < 1 the inequality xp − px ≤ 1 − p holds (hint: curve
sketching of xp − px).

e) Show by setting x = a/b and q = 1 − p in the above inequality, that for a, b > 0 the
inequality apbq ≤ pa+ qb holds.

f) Show using the above result that for a, b > 0, p, q > 1 and 1
p

+ 1
q

= 1 the inequality

ab ≤ ap

p
+ bq

q
holds.

Exercise 5.4 Prove Lemma 5.2, i.e. that ‖x‖∞ = limp→∞ ‖x‖p
Exercise 5.5
a) Write a Mathematica program using LinearSolve, which solves a linear system symbol-

ically and apply it to a linear system with up to seven equations.

b) Show empirically that the length of the solution formula grows approximately exponen-
tially with the number of equations.

Exercise 5.6 Show that the addition of the k-fold of row i of a square matrix A to another
row j can be expressed as the product G ·A with a square matrix G. Determine the matrix
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G.

Exercise 5.7 Prove theorem 5.2, i.e. that the Gaussian method for solving linear systems is
correct.

Exercise 5.8 Apply elimination to produce the factors L and U for

A =

[
2 1
8 7

]
, A =

3 1 1
1 3 1
1 1 3

 , A =

1 1 1
1 4 4
1 4 8


Exercise 5.9 Calculate for the matrix

A =

 1 2 3
1 0 1
2 1 1


the matrices L and U of the LU decomposition. Then determine the solutions of Ax = b for
the right sides (1, 1, 1)T and (3, 1, 0)T .

Exercise 5.10 If A = L1D1U1 and A = L2D2U2, prove that L1 = L2, D1 = D2 and U1 = U2.
If A is invertible, the factorization is unique.
a) Derive the equation L−1

1 L2D2 = D1U1U
−1
2 and explain why one side is lower triangular

and the other side is upper triangular.

b) Compare the main diagonals in that equation, and then compare the off-diagonals.

Exercise 5.11 For the calculation of
√
a, the iteration of xn+1 = a/xn with a > 0, x0 > 0

can be tried.
a) Visualize the iteration sequence.

b) Explain on the basis of drawing why the sequence does not converge.

c) Prove that this sequence does not converge.

d) How to change the iteration formula xn+1 = a/xn, so that the sequence converges?

Exercise 5.12
a) What means convergence of a sequence (xn)n∈N? (Definition!)

b) Give a convergent, divergent, alternating convergent and alternating divergent sequence.

c) Give at least one simple convergence criterion for sequences.

Exercise 5.13 Apply the interval bisection method to the function

f(x) =
x(1− x)

1− x2

with the initial interval [−4,−1/2]. Calculate the limit of the sequence with at least 4 digits.
Give reasons for the surprising result.

Exercise 5.14 Sought are the solutions of the equation

tanx = cosx (5.4)

in the interval [0, π/2].
a) Show that the equation (5.4) in [0, π/2] has exactly one solution.
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b) In the following, the equation (5.4) is to be solved by fixed pointiteration. Therefore use
the form:

x = f(x) := arctan(cos x) (5.5)

Give the smallest possible Lipschitz bound for f and a corresponding sub-interval of
[0, π/2].

c) Determine an a priori estimation for the number of iterations for a precision of at least
10−3.

d) Calculate the iteration sequence (xn) of the fixed-point iteration with the initial v alue
x0 = π/4 to n = 10.

e) Determine an interval in which the root is for sure using the a posteriori estimation after
8 steps.

f) Why is the transformation of the equation (5.4) to x = arccos(tanx) less favorable than
those used above?

g) Write a simple as possible Mathematica program (3-4 commands!), which calculates the
iteration sequence and stores it in a table.

Exercise 5.15 Prove theorem 5.8, i.e. if f : [a, b]→ [a, b] is a contraction and is continuously
differentiable with f ′(x) 6= 0 ∀x ∈ [a, b], then it holds:

lim
k→∞

εk+1

εk
= f ′(s)

Exercise 5.16
a) Prove that any contracting function f : [a, b]→ [a, b] ∈ R is continuous.

b) Prove that not all contracting functions f : [a, b]→ [a, b] ∈ R are differentiable.

c) Prove that any differentiable function f : D → R, (D ⊂ R open) is continuous.



Chapter 6

Function Approximation

6.1 Polynomial Interpolation

Example 6.1 Linear interpolation (see figure Figure 6.1)

When there were no calculators, using logarithms for practical purposes was done with tables
of logarithms. Only integers were mapped, intermediate values were determined by linear
interpolation.

x
1230 12311230.3

3.0903

3.0899

y

Figure 6.1: Determination of lg(1230.3) using linear interpolation.

lg(1230) = 3.0899

lg(1231) = 3.0903

lg(1230.3) = ?

lg(1230.3) ≈ 3.0899 + 4 · 0.0001 · 0.3 = 3.09002

6.1.1 Motivation

� Higher order interpolation (quadratic,...)

� Tools for numerical methods (functional approximation, numerical differentiation, in-
tegration ,...)
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6.1.2 The Power Series Approach

Given: Table (xk, yk) for (k = 1, . . . , n)

Sought: Polynomial p with p(xi) = yi for (i = 1, . . . , n)

Ansatz: p(x) = a1 + a2x+ · · ·+ anx
n−1

⇒ a1 + a2xi + a3x
2
i + · · ·+ anx

n−1
i = yi for (i = 1, . . . , n)

⇒ A

 a1
...
an

 =

 y1
...
yn

 with A =


1 x1 x2

1 · · · xn−1
1

1 x2 x2
2 · · · xn−1

2
...

...
1 xn x2

n · · · xn−1
n


︸ ︷︷ ︸

Vandermonde matrix

Theorem 6.1 If x1, . . . , xn are distinct, then for any y1, . . . , yn there is a unique polynomial
p of degree ≤ n− 1 with p(xi) = yi for (i = 1, . . . , n).

Proof:
To show that equation Aa = y is uniquely solvable, we show that the nullspace of A is 0 ,
i.e. Aa = 0 ⇒ a = 0 :

Aa = 0 ⇒ ∀i = 1, . . . , n : p(xi) = 0

⇒ p(x ) ≡ 0 (zero polynomial)

⇒ a = 0

Example 6.2 Interpolation of sin(x)
Table of values in {−m,−m+ 1, . . . , 0, 1, 2, . . . ,m}

sin(0.5) = 0.479426

p(0.5) = 0.479422 (m=3, i.e. n=7 points)

p(0.5) = 0.469088 (m=2, i.e. n=5 points)

sin(x) is well approximated by the interpolating polynomial, even at relatively small number
of given points (n=5,7), as can be seen in Figure 6.2, Figure 6.3 and Figure 6.4.

Example 6.3 Interpolation of f(x) in the interval [-1,1]:

f(x) =
1

1 + 25x2

Figure 6.5 clearly shows the poor approximation particulary in the margin areas. Idea:
more given points in the margin areas
Improvement: Chebyshev interpolation
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-3 -2 -1 1 2 3

-2

-1

1

2

Figure 6.2: Interpolation of sin(x) with n = 5 given points.

-4 -2 2 4

-1

-0.5

0.5

1

Figure 6.3: Interpolation of sin(x) with n = 7 given points.

Definition 6.1 For any f : [a, b]→ R we define ‖f‖∞ := maxx∈[a,b] |f(x)|

Theorem 6.2 Let f : [a, b]→ R be n-times continuously differentiable. Let a = x1 < x2 <
. . . < xn−1 < xn+1 = b and p the interpolating polynomial of degree n with p(xi) = f(xi) for
(i = 1, . . . , n). Then

f(x)− p(x) =
f (n+1)(z)

(n+ 1)!
(x− x1)(x− x2) · · · (x− xn+1)

for a point z ∈ [a, b].

Note:

� remainder term is the same as in Taylor’s theorem for x1 = x2 = · · · = xn+1
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-7.5 -5 -2.5 2.5 5 7.5

-2

-1

1

2

Figure 6.4: Interpolation of sin(x) with n = 15 given points.

-1 -0.5 0.5 1

0.5

1

1.5

2

Figure 6.5: Interpolation with 11 given points.

� right hand side equals zero for x = xi (i.e. in all given points)

Question: How should the given points x1, . . . , xn+1 be distributed, to minimize (for con-
stant n) the maximum error?

Answer: Chebyshev interpolation

Theorem 6.3 Let f : [−1, 1] → R and p the interpolating polynomial at the given points
−1 ≤ x1 < · · · < xn ≤ 1.
The approximation error ‖f − p‖∞ = maxx∈[−1,1] |f(x)− p(x)| is minimal for

xk = − cos

(
2k − 1

n
· π

2

)
(k = 1, . . . , n)

The values xk are called Chebyshev abscissas.
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Example 6.4 Let n=6. the Chebyshev abscissas are (see also Figure 6.6).

k 1 2 3 4 5 6
2k-1 1 3 5 7 9 11

-cos
(
π
12

(2k − 1)
)

-0.966 -0.707 -0.259 0.259 0.707 0.966

equidistant grid

−1

0.52 0.26

0 1

Chebyshev abscissae

Figure 6.6: Distribution of the given points.

Example 6.5 Figure 6.7 shows a significant reduction in the maximum norm of the error
when Chebyshev interpolation is applied.

-1 -0.5 0.5 1

0.2

0.4

0.6

0.8

1

Figure 6.7: Chebyshev interpolation with 11 given points.

Corollar 6.1.1 Theorem 6.3 can be applied easily to functions f : [a, b]→ R, by calculating
the given points tk for k = 1, . . . , n out of the Chebyshev abscissas xk by

tk =
1

2
(a+ b) +

1

2
(b− a)xk

.

Additional notes:

1. Are polynomials suitable for approximating a given function f?
Polynomials are not suitable for functions alternating between strong and weak curva-
ture or poles.
Possibly: piecewise approximation by polynomials (⇒ spline approximation) or ap-
proximation by rational functions.
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2. Is a polynomial well defined by the value table’s data?
equidistant given points → Chebyshev abscissas or choose smaller degree of the poly-
nomial ⇒ overdetermined system of linear equations (degree(p) ≤ 2 · √n in which
n=Number of given points).

6.1.3 The Horner scheme

By using the following scheme, computing time will be saved in the evaluation of polynomials:

p(x) =
n∑
k=1

akx
k−1 = a1 + a2x+ . . .+ anx

n−1

= a1 + x(a2 + x(a3 + x(. . .+ x(an−1 + xan) . . .)))

Iteration:

y0 := an

yk := yk−1x+ an−k k = 1, . . . , n− 1

⇒ p(x) = yn−1

Computing time:
(n-1) Additions + Multiplications
naive evaluation: (xk = x · x · . . . · x · x︸ ︷︷ ︸

k-times

)

(n-1) additions, (n-2)-times potentiate, (n-1) multiplications

n−1∑
k=0

k =
n(n− 1)

2
=

1

2
(n2 − n) multiplications

6.1.4 Function Approximation vs. Interpolation

In interpolation n points (xk, yk) with (k = 1, . . . , n) are given and a function p (e.g., a
polynomial of degree n-1) is sought with p(xk) = yk for (k = 1, . . . , n).

In the approximation of functions, a function f : [a, b]→R is given (symbolically by a
formula or a value table with possibly noisy values) and the task is to find the ”’simplest”’
possible function p, which approximates f as good as possible with respect to a norm (e.g.
maximum norm). The function p can be a polynomial but also a linear combination of basis
functions such as p(x) = a1 sinx+ a2 sin 2x+ a3 sin 3x+ · · ·+ an sinnx where a1, . . . , an are
to be determinated). Interpolation can be used as a tool for function approximation.

6.2 Spline interpolation

6.2.1 Interpolation of Functions

Given: Value table (xk, yk) with k = 0, 1, . . . , n
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Sought: Interpolating (function) s(x) with s(xk) = yk, and s(x) must be two times contin-
uously differentiable.

Ansatz: piecewise cubic polynomials

s0(x)

s1(x) s2(x)

x3x2x1x0

y0

y1
y2

s(x)

x

Figure 6.8: natural cubic spline through 4 points.

The property of s(x) to be two times continuously differentiable implies:

s′(x) continuous , s′′(x) continuous at all inner interval limits.

⇒ 2 additional conditions for each cubic polynomial

⇒ the n subpolynomials uniquely determined by 2 points + 2 derivation conditions.

ansatz: for (i=0,. . . ,n-1) let

s(x) = si(x) = ai(x− xi)3 + bi(x− xi)2 + ci(x− xi) + di (6.1)

requirements:

si(xi) = yi i=0,. . . ,n-1 (6.2)

sn−1(xn) = yn (6.3)

si(xi+1) = si+1(xi+1) i=0,. . . ,n-2 (6.4)

s′i(xi+1) = s′i+1(xi+1) i=0,. . . ,n-2 (6.5)

s′′i (xi+1) = s′′i+1(xi+1) i=0,. . . ,n-2 (6.6)

⇒ n+ 1 + 3(n− 1) = 4n− 2 linear equations for 4n unknowns

⇒ 2 conditions are missing

Additional condition (natural spline):

s′′(x0) = 0, s′′(xn) = 0 (6.7)
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substitution:
hi = xi+1 − xi (6.8)

(6.1), (6.2) ⇒ si(xi) = di = yi (6.9)

(6.1), (6.2), (6.4) ⇒ si(xi+1) = aih
3
i + bih

2
i + cihi + di = yi+1 (6.10)

(6.1) ⇒ s′i(xi) = ci (6.11)

(6.1) ⇒ s′i(xi+1) = 3aih
2
i + 2bihi + ci (6.12)

(6.1) ⇒ s′′i (xi) = 2bi =: y′′i (6.13)

(6.1) ⇒ s′′i (xi+1) = 6aihi + 2bi = s′′i+1(xi+1) = y′′i+1 (6.14)

(6.13), (6.14)⇒ ai =
1

6hi
(y′′i+1 − y′′i )

(6.13)⇒ bi =
1

2
y′′i (6.16)

(6.9), (6.10), (6.13), (6.14)⇒ ci =
1

hi
(yi+1 − yi)− hi

6
(y′′i+1 + 2y′′i )

(6.9)⇒ di = yi

if y′′i are known, then also ai, bi, ci, di are known.
(6.16) in (6.12):

s′i(xi+1) =
1

hi
(yi+1 − yi) +

hi
6

(2y′′i+1 + y′′i )

i→ i− 1 : s′i−1(xi) =
1

hi−1

(yi − yi−1) +
hi−1

6
(2y′′i + y′′i−1) (6.17)

because of s′i−1(xi) = s′i(xi) (Requirement (6.5))

and s′i(xi) = ci =
1

hi
(yi+1 − yi)− hi

6
(y′′i+1 + 2y′′i )

follows

1

hi−1

(yi − yi−1) +
hi−1

6
(2y′′i + y′′i−1) =

1

hi
(yi+1 − yi)− hi

6
(y′′i+1 + 2y′′i )

Sorting of the y′′-variables to the left results in

⇒ hi−1y
′′
i−1 + 2(hi−1 + hi)y

′′
i + hiy

′′
i+1 =

6

hi
(yi+1 − yi)− 6

hi−1

(yi − yi−1) (6.19)

for i = 1, 2, . . . , n− 1.

linear system for y′′1 , y
′′
2 , . . . , y

′′
n−1

y′′0 , y
′′
n arbitrarily chooseable!

y′′0 = y′′n = 0: natural spline
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Example 6.6 n = 5
2(h0 + h1) h1 0 0

h1 2(h1 + h2) h2 0
0 h2 2(h2 + h3) h3

0 0 h3 2(h3 + h4)

 ·


y′′1
y′′2
y′′3
y′′4

 = r

with ri =
6

hi
(yi+1 − yi)− 6

hi−1

(yi − yi−1)

coefficient matrix is tridiagonal

Example 6.7 We determine a natural spline interpolant through the points (0, 0), (1, 1), (2, 0), (3, 1).
It holds n = 3 and h0 = h1 = 1. The coefficient matrix reads(

2(h0 + h1) h1

h1 2(h1 + h2)

)
=

(
4 1
1 4

)
with the right hand side

r1 = 6(y2 − y1)− 6(y1 − y0) = −12

r2 = 6(y3 − y2)− 6(y2 − y1) = 12

yielding (
4 1
1 4

)(
y′′1
y′′2

)
=

( −12
12

)
with the solution

y′′1 = −4, y′′2 = 4, y′′0 = y′′3 = 0

Inserting in (6.16) gives

s0(x) = −2/3x3 + 5/3x

s1(x) = 4/3x3 − 6x2 + 23/3x− 2

s2(x) = −2/3x3 + 6x2 − 49/3x+ 14.

with the graph

6.2.2 Correctness and Complexity
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Definition 6.2 A n× n matrix A is called diagonally dominant, if

|aii| >
n∑
k=1
k 6=i

|aik|

for i = 1, 2, . . . , n

Theorem 6.4 A linear system A · x = b is uniquely solvable, if A is diagonally dominant.
In the Gaussian Elimination neither row nor column swapping is needed.

Theorem 6.5 The computation time for the Gaussian elimination method for a tridiagonal
matrix A is linear in the lenght n of A.

Proof: (see Exercises)

Theorem 6.6 Spline-Interpolation: Let x0 < x1 < . . . < xn. There is a unique cubic
spline interpolant s(x) with y′′0 = y′′n = 0 (natural Spline). It can be calculated in linear
time (O(n)) by the method described above (by using the tridiagonal matrix algorithm, see
exercise).

The Tridiagonal Algorithm


b1 c1 0 · · · 0

c1
. . . . . . 0

...

0
. . . . . . . . . 0

... 0
. . . . . . cn−1

0 · · · 0 cn−1 bn

 · x =


d1

d2
...

dn−1

dn


Elimination:

m := ck−1/bk−1

bk := bk −m · ck−1

dk := dk −m · dk−1

 k = 2, . . . , n

Backward substitution:

dn := dn/bn
dk := (dk − ckdk+1)/bk
xk = dk

 k = n− 1, . . . , 1

Proof:



6.2 Spline interpolation 123

1. Existence and uniqueness
Let x0 < x1 < . . . < xn ⇒ hi = xi+1 − xi > 0

⇒ 2(hi−1 + hi) > hi−1 + hi

⇒ matrix diagonally dominant and uniquely solvable

⇒ ai, bi, ci, di uniquely determined

⇒ spline interpolant uniquely determined

2. Computation time (see Exercises)

Other conditions:

1. y′′0 = y′′n = 0 (natural spline)

2. y′′0 = s′′(x0), y′′n = s′′(xn) (s′′ given)

3. y′′0 = y′′1 , y
′′
n = y′′n−1 (s′′ constant on the border)

4. s′ given at the border (best choice if s′(x0), s′(xn) is known)

5. if y0 = yn : y′0 = y′n, y
′′
0 = y′′n (periodic condition)

y

x

y0=yn

xnx0

Figure 6.9: periodic condition at spline interpolation.

6.2.3 Interpolation of arbitrary curves

Example 6.8 Airfoil:

given: value table

k xk yk
1 x1 y1

2 x2 y2
...

...
...

n xn yn

The curve is not a function, therefore, naive interpolation is not applicable.
⇒ Parameter representation (parameter t)
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y

x

... P4
P3

P2

P0
P1

Figure 6.10: parametric plot of the given value pairs.

(xk, yk)

(tk, xk) (tk, yk)

�
�
�	

@
@
@R

(tk, xk), (tk, yk) unique, if (tk) for k = 1, . . . , n monotonically increasing!

Simplest choice of tk: tk = k

k tk xk tk yk
0 0 x0 0 y0

1 1 x1 1 y1

2 2 x2 2 y2
...

...
...

...
...

n n xn n yn

ideal choice of tk: arc length
good choice of tk:

t0 = 0,

tk = tk−1 + ||Pk − Pk−1||
= tk−1 +

√
(xk − xk−1)2 + (yk − yk−1)2 k = 1, 2, . . . , n

Calculation of the spline curve

1. Computation of the spline function for (tk, xk) ⇒ x(t)

2. Computation of the spline function for (tk, yk) ⇒ y(t)

3. spline curve defined by:
x = x(t)
y = y(t)
for 0 ≤ t ≤ tn
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6.3 Method of Least Squares and Pseudoinverse

6.3.1 Minimization according to Gauss

Given: n measurements, i.e. value pairs (x1, y1), . . . , (xn, yn)
function f(x, a1, . . . , ak) = f(x) k ≤ n

Sought: Values for a1, . . . , ak such, that

E(f(x1)− y1, . . . , f(xn)− yn) =
n∑
i=1

(f(xi)− yi)2

gets minimal!

Simplification: f is a linear combination of functions

f(x, a1, . . . , ak) = a1f1(x) + a2f2(x) + · · ·+ akfk(x) (6.20)

E extremal⇒ ∀j = 1, . . . , k :
∂E

∂aj
= 0

E(. . .) =
n∑
i=1

(a1f1(xi) + · · ·+ akfk(xi)− yi)2

∂E

∂aj
= 2

n∑
i=1

(
k∑
l=1

alfl(xi)− yi
)
fj(xi)

∂E

∂aj
= 0⇒

n∑
i=1

k∑
l=1

alfl(xi)fj(xi) =
n∑
i=1

yifj(xi)

⇔
k∑
l=1

al

n∑
i=1

fl(xi)fj(xi)︸ ︷︷ ︸
Ajl

=
n∑
i=1

yifj(xi)︸ ︷︷ ︸
bj

⇔
k∑
l=1

Ajlal = bj for (j = 1, . . . , k) (6.21)

linear system of equations for the parameters a1, . . . ak (Normal equations!)
Solving of the normal equations gives a1, . . . , ak.
Note: normal equations are usually (not always) uniquely solvable (see Theorem 6.7).

Example 6.9 With the method of least squares the coefficients a1, a2, a3 of the function
f(x) = a1x

2 +a2x+a3 using the given points (0,−1), (2, 0), (3, 2), (4, 1) are to be determined.
First, we set up the normal equations:

k∑
l=1

Ajlal = bj for (j = 1, . . . , k)



126 6 Function Approximation

with

Ajl =
n∑
i=1

fl(xi)fj(xi), bj =
n∑
i=1

yifj(xi).

It follows:

A =

 ∑n
i=1 x

4
i

∑n
i=1 x

3
i

∑n
i=1 x

2
i∑n

i=1 x
3
i

∑n
i=1 x

2
i

∑n
i=1 xi∑n

i=1 x
2
i

∑n
i=1 xi

∑n
i=1 1

 =

 353 99 29
99 29 9
29 9 4


and

b =

 ∑n
i=1 yix

2
i∑n

i=1 yixi∑n
i=1 yi

 =

 34
10
2


The solution of this linear system is a1 = −3/22, a2 = 127/110, a3 = −61/55, because 353 99 29

99 29 9
29 9 4


 −

3
22

127
110

−61
55

 =

 34
10
2


The resulting parabola has the following form:

1 2 3 4

-1

-0.5

0.5

1

1.5

2

6.3.2 Application: rectification of photos

In RoboCup, so-called ”OmniCams” are used. These are digital cameras that take a 360-
degree picture via a parabolic mirror (see fig. 6.11).
The mirror distorts the image considerably. With the Formula of mirror curvature a formula
for conversion of pixel coordinates into real distances on the field can be derived. Because
this formula critically depends on adjustments of the camera, the mirror, the image can not
be rectified completely. Therefore, to determine the transformation of pixel distances into
real distances we approximate an polynomial interpolation. White markings are pasted on
the field at a distance of 25cm (fig. 6.12) and the pixels distances to the center are measured.
This gives the following value table:

dist. d [mm] 0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000 4250
pixel dist. x 0 50 108 149 182 209 231 248 263 276 287 297 305 313 319 325 330 334
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Figure 6.11: The RoboCup robot Kunibert with upward-pointing camera and mirror (left)
and a distorted picture of the field.

0

1000

2000

3000

4000

5000

0 50 100 150 200 250 300 350

m
m

pix el

Data
Polynom

Figure 6.12: The markers for the interpolation on the field are shown in the left and the
graph of the interpolating polynomial d(x) is in the right diagram.

Figure 6.13: Modified image after the edge detection (left) and the rectified image after
application of the transformation (right).
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Now a polynomial of degree 6 (calculated with the method of least squares) is fitted to the
points. We get:

d(x) = 3.02 · 10−11 · x6 − 2.57 · 10−8 · x5 + 8.36 · 10−6 · x4 − 1.17 · 10−3 · x3 +

6.85 · 10−2 · x2 + 3.51 · x+ 6.79 · 10−1

Fig. 6.13 shows the image before and after the transformation.

Theorem 6.7 The normal equations are uniquely solvable if and only if the vectors f1(x1)
...

f1(xn)

 , . . . ,

 fk(x1)
...

fk(xn)


are linearly independent.

x

y

f1(x)

f2(x)

x5 x6 x7 x8x1 x2 x3 x4 ... xn

 f2(x1)
...

f2(xn)

 = 2

 f1(x1)
...

f1(xn)


⇒ f1 and f2 are nicht linearly independent
on the grid (x1, . . . , xn).

Proof:
Normal equations uniquely solvable ⇔ A non-singular

Ajl =
n∑
i=1

fl(xi)fj(xi)

⇔ A = F TF mit F =

 f1(x1) · · · fk(x1)
...

...
f1(xn) · · · fk(xn)


Assumption: F TF is singular ⇒ ∃z 6= 0 : F TFz = 0

⇒ zTF TFz = ‖Fz‖2
2 = 0

⇒ Fz = 0⇒
k∑
i=1

a izi = 0 (a i=i-th colunm of F)

⇒ columns of F are linearly dependent
⇒ contradiction to the assumption of Theorem 6.7
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Example 6.10 We now show that the method of least squares is actually applicable in the
example 6.9 and that the coefficients are uniquely determined.
According to Theorem 6.7 the following vectors must be linearly independent:

v1 =

 f1(x1)
...

f1(x4)

 =


0
4
9
16

 , v2 =

 f2(x1)
...

f2(x4)

 =


0
2
3
4

 , v3 =

 f3(x1)
...

f3(x4)

 =


1
1
1
1


If v1, v2, v3 are linear independent, there must be real numbers a, b, c 6= 0, so that

a


0
4
9
16

+ b


0
2
3
4

+ c


1
1
1
1

 = 0.

Assume there are such Numbers a, b, c. Then it follows immediately c = 0 out of which

a


0
4
9
16

+ b


0
2
3
4

 = 0.

follows. But this means, v1 must be a multiple of v2. This is obviously not the case. So
v1, v2, v3 are linear independent.

6.3.3 Special Case: Straight Line Regression

regression line f(x, a, b) = ax+ b

E =
n∑
i=1

(axi + b− yi)2

∂E

∂a
= 2

n∑
i=1

(axi + b− yi)xi = 0

∂E

∂b
= 2

n∑
i=1

(axi + b− yi) = 0

a
n∑
i=1

x2
i + b

n∑
i=1

xi =
n∑
i=1

xiyi

a

n∑
i=1

xi + nb =
n∑
i=1

yi

Solution:

a =
n
∑
xiyi −

∑
xi
∑
yi

n
∑
x2
i − (

∑
xi)

2

b =

∑
x2
i

∑
yi −

∑
xi
∑
xiyi

n
∑
x2
i − (

∑
xi)

2
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Remains to be shown: The solution
(
a
b

)
of degree E=0 is a minimum!

6.3.4 Statistical Justification

The method of least squares can be justified well with statistical methods. Here this is done
only for one special case. Let f(x) = c be the constant function and c be sought.

x
x2x1 xn...

y

Figure 6.14: Mean over all function values.

E =
n∑
i=1

(f(xi)− yi)2 =
n∑
i=1

(c− yi)2

∂E

∂c
= 2

n∑
i=1

(c− yi) = 2

(
n∑
i=1

c−
n∑
i=1

yi

)

= 2

(
nc−

n∑
i=1

yi

)
= 0

⇒ nc =
n∑
i=1

yi

c =
1

n

n∑
i=1

yi arithmetic mean

Errors of the coefficients ai
Because of measurement errors in (xi, yi), the coefficients a1, . . . , ak are erroneous.Calculation
of the errors ∆a1, . . . ,∆ak out of ∆y1, . . . ,∆yn with the law of error propagation (maximum
error).1

∆ai =
n∑
j=1

∣∣∣∣∂ai∂yj

∣∣∣∣∆yj
For many measurements, the formula for the maximum error gives a too large value. A
better approximation is obtained by the formula for the mean Error

1∆yi is the absolute value of the maximum expected measurement error of variable yi.
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∆ai =

√√√√ n∑
j=1

(
∂ai
∂yj

)2

(∆yj)
2

Special Case Straight Line Regression:

∂a

∂yj
=

1

N

(
nxj −

n∑
i=1

xi

)
∂b

∂yj
=

1

N

(
n∑
i=1

x2
i −

(
n∑
i=1

xi

)
xj

)
with N = n

∑
x2
i −

(∑
xi

)2

∆a =
n∑
j=1

∣∣∣∣ ∂a∂yj
∣∣∣∣∆yj

∆b =
∑n

j=1

∣∣∣ ∂b∂yj ∣∣∣∆yj

y

x

a+da

a-da

b+db

b

b-db

Figure 6.15: regression line through value pairs.

Nonlinear Regression (Examples): Power function:

v = c · ud Constants c, d sought!

log v = log c+ d log u

y := log v, x := log u⇒ a1 = log c, a2 = d

y = a1 + a2x
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Exponential function:

v = Aebu A, b sought

ln v = lnA+ bu

y := ln v, x := u, ⇒ a1 = lnA, a2 = b

y = a1 + a2x

6.3.5 Multidimensional Least Squares

The method presented so far is good for the approximation of functions f : R → R, i.e. for
one-dimensional functions with one-dimensional argument. In the setting of Equation 6.20
we determine the coefficients a1, . . . , ak of a linear combination of one-dimensional basis
functions f1, . . . , fk:

f(x) = a1f1(x) + · · ·+ akfk(x) = aT f (x). (6.22)

Now, there is a very easy generalization of this ansatz to multidimensional input. We just
replace the one-dimensional x by a vector x to obtain

f(x ) = a1f1(x ) + · · ·+ akfk(x ) = aT f (x ).

In the derivation of the normal equations, proof, etc. there are no changes other than replac-
ing x by a vector.
A different way to get into the multidimensional world is the ansatz

f(x ) = a1x1 + · · ·+ akxk = aTx .

The advantage here is that we do not have to worry about the selection of the basis func-
tions fi. But there is no free lunch. The drawback is the very limited power of the linear
approximation.

6.3.6 A More General View

We still want to fit a function

f(x ) = a1f1(x ) + · · ·+ akfk(x ) = aT f (x )

with k unknown parameters a1, . . . , ak through the n data points (x 1, y1), . . . , (xn, yn). If we
substitute all the points into the ansatz, requiring our function to hit all n points, i.e.

f(x i) = yi,

we get the linear system
a1f1(x 1) + . . .+ akfk(x 1) = y1

...
...

...
a1f1(xn) + . . .+ akfk(xn) = yn.

(6.23)

If we define the n× k-matrix M as

Mij = fj(x i),
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Equation 54 reads
M · a = y .

For n > k the system is overdetermined and normally has no solution. In the next section,
we will show how to find an approximate solution by using the method of least squares.
For the case n = k we may get a unique solution, because here M is a square matrix. If we
use for j = 0, . . . , k the basis functions

fj(x) = xj,

we end up with the Vandermonde matrix from Section 6.1.2.

6.3.7 Solving Overdetermined Linear Systems

The linear System
x1 + x2 + x3 = 1
x1 + x2 = 1
x1 + x3 = 1

x2 + x3 = 1

is not solvable, because it is overdetermined. Even though we have to accept this fact, we
can ask, which vektor x fulfills the linear system best. This can be formalized as follows:
Given, an overdetermined linear system

Mx = y

with n equations and k < n unknowns x1, . . . xk. M is a n× k matrix, x ∈ Rk and y ∈ Rn.
Obviously, in general, there is no vector x , for which Mx = y . Therfore we are looking for
a vector x , which makes the left side as good as possible equal to the right side. That is, for
which Mx ≈ y , or for which

||Mx − y ||2 =
√

(Mx − y)2

gets minimal. It also follows that (Mx − y)2 gets minimal. So

n∑
i=1

((Mx )i − yi)2 =
n∑
i=1

(
k∑
l=1

Milxl − yi
)2

must be minimal. To determine the minimum we set all partial derivatives equal to zero:

∂

∂xj

n∑
i=1

(
k∑
l=1

Milxl − yi
)2

= 2
n∑
i=1

(
k∑
l=1

Milxl − yi
)
Mij = 0

and get after multiplying out

n∑
i=1

k∑
l=1

MilMijxl =
n∑
i=1

Mijyi

or
k∑
l=1

(
n∑
i=1

MT
jiMil

)
xl =

n∑
i=1

MT
jiyi

or as a vector equation
MTMx = MTy . (6.24)

Therewith we have derived the following theorem
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Theorem 6.8 Let an overdetermined linear system Mx = y with x ∈ Rk, y ∈ Rn (n > k)
and the n×k matrix M be given. The solution x̂ with least squared error can be determined
by solving the linear system

MTM x̂ = MTy .

This system has a unique solution if and only if the matrix M has full rank (This proposition
is equivalent to theorem 6.7.).

Please note that Equation 6.24 is identical to the normal equations (Equation 6.21, proof as
exercise.) This linear system can be rewritten into

x̂ = (MTM)−1MTy .

If M is invertible and the system Mx = y is uniquely solvable, then the solution x can be
calculated by

x = M−1y .

Comparing this equation with the above for x̂ , it is clear why the square matrix

(MTM)−1MT

is called pseudoinverse of M . The matrix MTM is the so called Gram matrix of M .
Now we apply the theorem to the example at the beginning of the section which reads

111
110
101
011

x =


1
1
1
1

 .

Application of Theorem 6.8 delivers

MTM =

 1 1 1 0
1 1 0 1
1 0 1 1

 ·


1 1 1
1 1 0
1 0 1
0 1 1

 =

 3 2 2
2 3 2
2 2 3


and the equation  3 2 2

2 3 2
2 2 3

 · x̂ =

 3
3
3


with the solution x̂ = (3

7
, 3

7
, 3

7
)T .

6.3.8 Solving Underdetermined Linear Systems

Let
Mx = y

be an underdetermined linear system with n equations and k > n unknowns x1, . . . xk. So
M is a n × k matrix, x ∈ Rk and y ∈ Rn. Obviously, there are in general infinitely many
vectors x , with Mx = y . So we can choose any one of these vectors. One way for this choice
is to choose out of the set of solution vectors x one with minimal square norm ‖x‖2.
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The task to determine such a vector, can also be formulated as constrained extremum prob-
lem. A minimun of ‖x‖2 under n constraints Mx = y is sought. With the method of
Lagrange parameters it is

‖x‖2 + λT (y −Mx )

For this scalar function, the gradient must become zero:

∇(‖x‖2 + λT (y −Mx )) = 2x −MTλ = 0

Multiplying the second equation from the left with M results in

2Mx −MMTλ = 0.

Insertion of Mx = y leads to
2y = MMTλ

and
λ = 2(MMT )−1y .

With 2x = MTλ, we get

x = 1/2MTλ = MT (MMT )−1y . (6.25)

The matrix MT (MMT )−1 is now a new pseudoinverse.

6.3.9 Application of the Pseudoinverse for Function Approxima-
tion

Let k basis functions f1, . . . , fk and n data points (x1, y1), . . . , (xn, yn) be given. We want to
determine parameters a1 . . . ak for

f(x) = a1f1(x) + . . . akfk(x),

such that for all xi the equation f(xi) = yi is fulfilled “as good as possible”. For the three
cases n < k, n = k and n > k we present examples. First, we determine the seven coefficients
of the polynomial

f(x) = a1 + a2x+ a3x
2 + a4x

3 + a5x
4 + a6x

5 + a7x
6

with the help of the points (1, 1), (2, 1), (3, 1), (4, 1), (5, 4). Inserting the points results the
underdetermined system of equations

1 1 1 1 1 1 1
1 2 4 8 16 32 64
1 3 9 27 81 243 729
1 4 16 64 256 1024 4096
1 5 25 125 625 3125 15625

 · a =


1
1
1
1
4

 .

Computing the pseudoinverse and solving for a yields

aT = (0.82, 0.36,−0.092,−0.23, 0.19,−0.056, 0.0055).

The result is shown in Figure 6.16, left. We recognize that here, despite the relatively high
degree of the polynomial a very good approximation is achieved, (why?).
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Reducing the degree of the polynomial to four, gives a quadratic matrix. It consists of the
first five columns of the matrix above and the system becomes uniquely solvable with

aT = (4.,−6.25, 4.38,−1.25, 0.125).

In Figure 6.16 (middle) oscillations can be seen, which are due to significantly larger absolute
values of the coefficients.
After a further reduction of the polynomial to two, only the first three columns of the
matrix remain and the solution via pseudoinverse delivers the least squares parabola with
the coefficients

aT = (2.8,−1.97, 0.429)

as shown on the right in fig. 6.16.

1 2 3 4 5

1

2

3

4

1 2 3 4 5

1

2

3

4

1 2 3 4 5

1

2

3

4

Figure 6.16: Polynomial fitted to data points in the underdetermined (k = 7, n = 5, left),
unique (k = 5, n = 5, center) and overdetermined (k = 3, n = 5, right) case.

We see that the work with underdetermined problems can be quite interesting and can lead
to good results. Unfortunately this is not always the case. If we try for example, like in
the example of the polynomial interpolation of fig. 6.7 with fixed number of 11 given points,
to increase the degree of the polynomial, then, unfortunately, the oscillations increase too,
instead of decrease (see fig. 6.17). The parametric methods usually require some manual
influencing. In the next section we describe Gaussian processes a method that works very
elegantly and requires minimal manual adjustments.

-1 -0.5 0.5 1

0.2

0.4

0.6

0.8

1

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Figure 6.17: Ordinary Chebychef interpolation (left and Figure 6.7) with 11 points leading to
a Polynomial of degree 10 and the solution of the underdetermined system for a polynomial
of degree 12 with the same points (right) yielding somewhat higher error.
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6.3.10 Summary

With the method of least error squares and minimizing the square of the solution x , we
have procedures to solve over and underdetermined linear systems. But there are also other
methods. For example, in the case of underdetermined systems of equations, instead of
determining ‖x‖2, we could e.g. maximize the entropy

−
k∑
i=1

xi lnxi

or determine an extremum of another function ‖x‖. The methods presented here are used
mainly, because the equations to be solved remain linear.
The computing time for calculating the pseudoinverse can be estimated in underdetermined
and in overdetermined case by O(k2n+k3). Slightly faster than the calculation of (MMT )−1

it is using the QR decomposition or the Singular Value Decomposition (SVD). Then the time
complexity is reduced to O(k2n). The here calculated pseudoinverses are so-called Moore-
Penrose pseudoinverses. That is, in the case of a matrix M with real-valued coefficients, the
pseudoinverse M+ has the following features:

MM+M = M

M+MM+ = M+

Applied on M , MM+ behaves indeed like an identity matrix.

6.4 Exercises

Polynomial Interpolation

Exercise 6.1
a) Let the points (−1, 1), (0, 0) and(1, 1) be given. Determine the interpolation polynomial

through these three points.

b) Let the points (−1, 1), (0, 0), (1, 1) and (2, 0).be given. Determine the interpolation
polynomial through these four points.

Exercise 6.2
a) Write a Mathematica program that calculates a table of all coefficients of the interpolating

polynomial of degree n for any function f in any interval [a, b]. Pass the function name,
the degree of the polynomial and the value table as parameters to the program. The
Mathematica functions Expand and Coefficient may be useful.

b) Write for the value table generation a program for the equidistant case and one for the
Chebyshev abscissas.

Exercise 6.3
a) Apply the program of exercise 6.2 to the interpolation of the function f(x) := e−x

2
in the

interval [−2, 10] and calculate the polynomial up to the 10th degree. The given points
are to be distributed ”equidistant”.

Exercise 6.4
a) Calculate the maximum norm of the deviation between the interpolation polynomial p

and f from exercise 6.3 on an equidistant grid with 100 given points.
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b) Compare the Equidistant interpolation with the Chebyshev interpolation and with the
Taylor series of f of degree 10 (expanded around x0 = 0 and x0 = 4, use the function (
tt Series)) with respect to maximum norm of the approximation error.

Spline-Interpolation

Exercise 6.5 Given two points (1, 1) and (2, 0) for computing a cubic spline with natural
constraints (y′′0 = y′′n = 0).
a) How many lines and columns has the tri-diagonal matrix for computing the y′′-variables?

b) Determine the spline by manually calculating the coefficients ai, bi, ci, di

Exercise 6.6 The points (−1, 1), (0, 0) and(1, 1) are given.
a) Determine the two cubic part splines with natural boundary conditions.

b) Why s0(x) = x2 and s1(x) = x2 is not a cubic spline function with natural boundary
conditions? Argue unrelated to the correct solution.

Exercise 6.7 How does the coefficient matrix for the spline interpolation change, if instead
of the boundary conditions y′′0 = y′′n = 0, the boundary conditions y′′0 = y′′1 , y′′n = y′′n−1 (second
derivative at the border) would be demanded? Change the coefficient matrix of example 7.1
accordingly.

Exercise 6.8 Program the tridiagonal matrix algorithm.

Exercise 6.9 Write a program to calculate a natural cubic spline out of a given value
table.

Exercise 6.10 Apply the program from Exercise 6.9 on the interpolation of the function
f(x) := e−x

2
in the interval [−2, 10] on a equidistant Grid with 11 points.

Exercise 6.11 Iterated Function Systems (IFS):
a) Calculate the value tables of the two sequences (xn), (yn) with

xn+1 = a yn + b

yn+1 = c xn + d

x0 = y0 = 1

to n = 20, where use the parameter values a = 0.9, b = −0.9, c = −0.9, d = 0.9.

b) Connect the points (x0, y0) . . . (xn, yn) with a cubic natural spline. Select as parameter
for the parametric representation the points euclidean distance.

Least Squares and Pseudoinverse

Exercise 6.12 With the method of least squares the coefficients a1, a2 of the function
f(x) = a1

x2 + a2

(x−9)2 using the given points (1, 6), (2, 1), (7, 2), (8, 4) are to be determined.

a) Set up the normal equations.

b) Calculate the coefficients a1, a2.

c) Draw f in the interval (0, 9) together with the points in a chart.

Exercise 6.13
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a) Write a Mathematica program to determine the coefficients a1 . . . ak of a function

f(x) = a1f1(x) + a2f2(x) + · · ·+ akfk(x)

with the method of least squares. Parameters of the program are a table of data points,
as well as a vector with the names of the base functions f1, . . . , fk. Try to work without
for loops and use the function (LinearSolve).

b) Test the program by creating a linear equation with 100 points on a line, and then use
your program to determine the coefficients of the line. Repeat the test with slightly noisy
data (add a small random number to the data values).

c) Determine the polynomial of degree 4, which minimizes the sum of the error squares of
the following value table (see: http://www.hs-weingarten.de/~ertel/vorlesungen/

mathi/mathi-ueb15.txt):
8 -16186.1
9 -2810.82

10 773.875
11 7352.34
12 11454.5
13 15143.3
14 13976.
15 15137.1
16 10383.4
17 14471.9

18 8016.53
19 7922.01
20 4638.39
21 3029.29
22 2500.28
23 6543.8
24 3866.37
25 2726.68
26 6916.44
27 8166.62

28 10104.
29 15141.8
30 15940.5
31 19609.5
32 22738.
33 25090.1
34 29882.6
35 31719.7
36 38915.6
37 37402.3

38 41046.6
39 37451.1
40 37332.2
41 29999.8
42 24818.1
43 10571.6
44 1589.82
45 -17641.9
46 -37150.2

d) Calculate to c) the sum of the squares. Determine the coefficients of a parabola and
calculate again the sum of the error squares. What difference do you see?

e) Which method allows you to determine experimentally, at several possible sets of basis
functions, the ”best”?

f) Find a function which creates an even smaller error.

Exercise 6.14 Given: (0, 2), (1, 3), (2, 6). Determine with the method of least squares
the coefficients c and d of the function f(x) = c · ed·x. Note that the parameter d occurs
nonlinear!

Exercise 6.15
a) Change the right hand side of the first system of equations at the beginning of Section

6.3.7, so that it gets uniquely solvable.

b) Which condition must hold, such that a linear system with n unknowns and m > n
equations is uniquely solvable?

Exercise 6.16 Use Theorem 6.8 to solve the system of equations x1 = 1, x1 = 2, x2 =
5 , x2 = 9 , x3 = −1 , x3 = 1 by the method of least squares.

Exercise 6.17 Show that for the pseudoinverse M+ of the sections 6.3.7 and 6.3.8 it holds
MM+M = M andM+MM+ = M+.

Exercise 6.18 Show that the computing time for the calculation of the pseudoinverse in
sections 6.3.7 and 6.3.8 can be estimated by O(k2n+ k3).

Exercise 6.19 Prove that the equation MTMx = MTy for the approximate solution of an
overdetermined linear system Mx = y (Equation 6.24) is equivalent to the normal equations
from the least squares method (Equation 6.21).

Exercise 6.20 Given M ,

M =

(
8 2 2
2 4 1

)
(6.26)

http://www.hs-weingarten.de/~ertel/vorlesungen/mathi/mathi-ueb15.txt
http://www.hs-weingarten.de/~ertel/vorlesungen/mathi/mathi-ueb15.txt
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a) Perform the SVD decomposition and write M in the form M = UΣV T .

b) Compute the pseudoinverse M+ of M .

c) Show that M+ is a valid (Moore-Penrose) pseudoinverse.

d) Show that the pseudoinverse of M , using the technique of the underdertemined system
mentioned in section 6.3.8, is the same as the one computed by SVD.

Exercise 6.21 Given the following Matrix M ,

M =

 3 6
2 4
2 4


a) Show that the pseudoinverse of the matrix M , using the technique of the overdetermined

system mentioned in section 6.3.7, is not applicable.

b) Perform the SVD decomposition and write M in the form M = UΣV T .

c) Compute the pseudoinverse M+ of M .

d) Show that M+ is a valid pseudoinverse.



Chapter 7

Statistics and Probability

7.1 Random Numbers

7.1.1 Applications of Random Numbers

• Randomized Algorithms

• Stochastic Simulation (Monte-Carlo simulation)

• Cryptography (e.g., key generation, one-time pad)

Literature: Don Knuth “The Art of Computer Programming” volume 2

In [19] U. Maurer gives a good definition of randomness:

Definition 7.1 A random bit generator is a device that is designed to output a sequence
of statistically independent and symmetrically distributed binary random variables, i.e.,
that is designed to be the implementation of a so-called binary symmetric source
(BSS). In contrast, a pseudo-random bit generator is designed to deterministically gen-
erate a binary sequence that only appears as if it were generated by a BSS.

Definition 7.2 A binary variable is symmetrically distributed if the probability for both
values is exactly 1/2.

A sequence is random, if f for any length ` the distribution of all strings of length ` has
maximum entropy.

Definition 7.3 A Pseudo Random Number Generator (PRNG) is an algorithm
that (after entering one or more seed numbers) deterministically generates a sequence of
numbers.

For cryptographic applications very problematic!
Alternative:
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Use of physical random events such as thermal noise or radioactive Decay: True Random
Numbers
⇒ True Random Number Generator (true RNG).
philosophy:
Till recently it is unknown if hidden parameters are describing a seemingly random process
deterministically. Physicist have proven that there are real random processes.

7.1.2 Kolmogorov Complexity

• If a (large) file can be compressed, then the content is not random.

• True random numbers can not be compressed!

• Is (31415926 . . .) random?

• No, because π = 3.1415926 . . . can be compressed

• Computer program can calculate any number of digits of π!

Definition 7.4 The Kolmogorov complexity of a (infinite) sequence is the length of
a shortest program, that can compute (enumerate) the sequence’s terms [28].

• π has finite Kolmogorov complexity.

• Any sequence of random numbers has infinite Kolmogorov complexity!

• Unsuitable in practice, since the Kolmogorov complexity is not computable!

• Each PRNG only produces sequences of finite Kolmogorov complexity. Such sequences
are not random

7.1.3 Compression of Random Number Sequences

Theorem 7.1 No program can compress any files of at least n-bit (n ≥ 0) whithout loss.

Example 7.1

length n bit sequences of length n number
0 ε 1
1 0, 1 2
2 00, 01, 10, 11 4
3 000, 001, 010, 011, 100, 101, 110, 111 8

8 sequences of length 3, but only seven shorter!

Proof: Suppose a program could do it. We compress with it (only!) all files of n-bit. The
compressed files are not exceeding the size of n − 1 bits. The number of compressed files
from of size 0 bis n− 1 bits is

1 + 2 + 4 + 8 + . . .+ 2n−1 = 2n − 1.

Because there are 2n files of size n bits, at least two files have to be compressed to the same
file. Thus, the compression is not lossless. �
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7.1.4 Pseudo Random Number Generators

Definition 7.5 Linear Congruence Generators are defined recursively by

xn = (axn−1 + b) mod m.

with parametrs a, b and m.

[29] recommends for 32-bit integers a = 7141, b = 54773 and m = 259200.
The period is not exceeding m. Why? (see exercise 7.3)

Theorem 7.2 The functional characteristics of a congruence generator lead to the following
upper bounds for the period:

recursion scheme period
xn = f(xn−1) mod m ≤ m
xn = f(xn−1, xn−2) mod m ≤ m2

xn = f(xn−1, xn−2, xn−3) mod m ≤ m3

. . .

Proof: With the modulus m we have only m different values for xn. Since f is deter-
ministic, if xn = f(xn−1) mod m, after the first repeated value, all succeeding values will be
repeated as well. Thus the period is ≤ m. If f depends on two previous values, then there
are m2 combinations. Thus the period is bounded by m2 and so on. �

Apparently, the more predecessors xn depends on, the longer the period can become. So
it seems natural to use as many predecessors as possible. We try it with the sum of all
predecessors and get

x0 = a, xn =

(
n−1∑
i=0

xi

)
mod m,

which may even lead to a non-periodic sequence, because the number of used predecessors
gets bigger with increasing m.
Let us first consider the specified sequence with x0 = 1 non-modular:

1, 1, 2, 4, 8, 16, 32, 64, 128, 256, . . .

Obviously this is an exponential sequence, hence

Theorem 7.3 The recursively defined formula x0 = 1, xn =
∑n−1

i=0 xi for n ≥ 1 is equivalent
to xn = 2n−1.

Proof: For n ≥ 2 we have

xn =
n−1∑
i=0

xi = xn−1 +
n−2∑
i=0

xi = xn−1 + xn−1 = 2 · xn−1.
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For n = 1, x1 = x0 = 1. Now it can be shown easily by induction, that xn = 2n−1 for n ≥ 1
(see exercise 7.3). �

For the modular sequence x0 = 1, xn =
(∑n−1

i=0 xi
)

mod m is equivalent to xn = 2n−1 mod m
for n ≥ 1. Thus xn depends only on xn−1 and m is the periods upper bound.
The period of the sequence is even ≤ m − 1, because when zero is reached, the result will
remain zero.
Not only the period is important for the quality of a PRNG. The symmetry of the bits should
as well be good.

7.1.5 The Symmetry Test

In principle, it is easy to test a bit sequence on symmetry. The mean of an n-bit sequences
has to be calculated

M(X1, . . . , Xn) =
1

n

n∑
i=1

xi

and compared with the expected value E(X) = 1/2 of a true random bit sequence. If the
deviation of the mean from the expected value is small enough, the sequence passes the test.
Now we want to calculate a threshold for the tolerable deviation. The expected value of
a true random bit X is E(X) = 1/2 and also its standard deviation σ(X) = 1/2 (see
exercise 7.4). The mean of n true random numbers, will deviate less from the expected
value, the larger n gets. The central limit theorem (Theorem 4.4) tells us that for n
independent identically distributed random variables X1, X2, . . . , Xn with standard deviation
σ, the standard deviation of the sum Sn = X1 + . . .+Xn is equal to

√
nσ. Thus, the standard

deviation σn of the mean

M(X1, . . . , Xn) =
1

n

n∑
i=1

xi

of n random bits is

σn =
1

n

√
nσ(X1) =

1√
n
σ(X1)

Because for random bits σ(Xi) = 1/2, we get

σn =
1

2
√
n
.

A normally distributed random variable has a value in [µ−2σ, µ+2σ] with probability 0.95.
This interval is the confidence interval to the level 0.95. We define the test of randomness
as passed, if the mean of the bit sequence is in the interval [1/2− 2σn, 1/2 + 2σn, ].

7.1.5.1 BBS Generator (Blum Blum Shub)

Even polynomial congruential generators of the form

xn = (akx
k
n−1 + ak−1x

k−1
n−1 + . . .+ a0) mod m.

can be cracked. Therefore, it is natural to look for better generators. A PRNG that generates
bits of very high quality, is the so-called BBS generator (see [23]). Choose primes p and q
with

p ≡ q ≡ 3 mod 4.



7.1 Random Numbers 145

Calculate n = p · q and choose a random number s, with ggT(s, n) = 1.
Calculate the Seed

x0 = s2 mod n.

The generator then repeatedly computes (starting with i = 1)

xi = (xi−1)2 mod n

bi = xi mod 2,

and outputs bi as the i-th random bit.
BBS is considered very good, but:
A BBS operated One-Time-Pad is as safe as a cipher with a key length of |s|.

7.1.6 Linear Feedback Shift Registers

Definition 7.6

• A shift register of length n consists of a bit vector (xn, . . . , x1). In each step, the bits
are shifted one position to the right, i.e.

xn 7→ xn−1 , . . . , x2 7→ x1

and a new bit In will be inserted to the left and the last bit Out will be output:

In 7→ xn, x1 7→ Out .

• A Linear Feedback Shift Register (LFSR) computes the new input (In) by modulo
2 addition of certain bits of the register.

Example 7.2 LFSR1:

x3 x x2 1

1 1 1

x3 x2 x1 Out
1 1 1

0 1 1 1

1 0 1 1

1 1 0 1

0 1 1 0

Period 3.

Example 7.3 LFSR2 has the period 7:

1 1 1

x3 x2 x1 Out
1 1 1
0 1 1 1

1 0 1 1

0 1 0 1

0 0 1 0

1 0 0 1

1 1 0 0

1 1 1 0
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The maximum period of a LSFR of length n is 2n − 1. Why?

Example 7.4 Analysis of a LFSR of length 3
We look at the bit sequence

B = (01110010)

and search the parameters a1, a2, a3.

1 1 0

a3 a a2 1

The LFSR can be represented mathematically by mapping

(x3, x2, x1) 7→ (a1x1 ⊕ a2x2 ⊕ a3x3, x3, x2),

repeatedly. The first three bits of the sequence B represent the state of the LFSR at a
specific time, i.e. x1 = 0, x2 = 1, x3 = 1
State of the LFSR: (1, 1, 0)
For each time unit later we get the state

(1, 1, 1) = (a2 ⊕ a3, 1, 1) (7.1)

(0, 1, 1) = (a3 ⊕ a2 ⊕ a1, 1, 1) (7.2)

(0, 0, 1) = (a2 ⊕ a1, 0, 1) (7.3)

From (7.1), (7.2), (7.3) we obtain the equations

a2 ⊕ a3 = 1 (7.4)

a3 ⊕ a2 ⊕ a1 = 0 (7.5)

a2 ⊕ a1 = 0 (7.6)

and calculate

(7.4) in (7.5) : 1⊕ a1 = 0 ⇒ a1 = 1 (7.7)

(7.7) in (7.6) : a2 ⊕ 1 = 0 ⇒ a2 = 1 (7.8)

(7.8) in (7.4) : a3 = 0 (7.9)

Thus the shift register has the form

1 1 0

and the sequence of states of a period of LFSR3 is

1 1 0
1 1 1 0

0 1 1 1

0 0 1 1

1 0 0 1

0 1 0 0

1 0 1 0

1 1 0 1

0
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Note that for analysis, only six bits of the Output sequence were used and that LFSR3 has
maximum period.

In general it can be shown, that for analysing a linear shift register at most 2n bits are
required of the output sequence. (Berlekamp-Massey-Algorithm)

Definition 7.7 The Linear Complexity of a sequence is the length of the shortest
LFSR that can generate the result.

If a key sequence has finite linear complexity n, then only 2n sequence bits are required to
crack the code of the corresponding stream cipher.
⇒ Kolmogorov Complexity.

7.1.7 True Random Numbers

• Special Hardware

◦ Physical Noise Source, AD converter, Amplifier, Filter, Test(?)

◦ Special Hardware (Thermal Noise) for test purposes

◦ Special Hardware for cryptographic applications are too expensive

• Intel: thermal noise of a resistor in the Pentium III processor

◦ Frequency: 75000 bits per second [30]

• Maxtor: Noise of IDE Hard Drives

◦ Frequency: 835 200 bits per second [21]

7.1.7.1 The Neumann Filter

John von Neumann, 1963, invented the following formula for repairing asymmetric se-
quences:

f : 00 7→ ε

11 7→ ε

01 7→ 0

10 7→ 1,

ε = the empty character string

Example 7.5 10001101011100101110 7→ 10011

Example 7.6 11111111111111111111 7→ ε

Example 7.7 10101010101010101010 7→ 1111111111
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Theorem 7.4 Are consecutive bits in a long (n → ∞) bit sequence statistically indepen-
dent, then after application of the Neumann Filter they are symmetrically distributed. The
length of the bit sequence is shortened by the factor p(1− p).

Proof:
If in a sequence the bits are independent and with probability p take the value “1”, then
the probability for a pair of “01” equals p(1 − p). The probability for the pair “10” is also
p(1 − p). Thus, the probability pn for the value “1” after the application of the Neumann
Filter is given by

pn =
p(1− p)
2p(1− p) = 1/2.

For the proof of the reduction factor we refer to exercise 7.8. �

0
0.05
0.1

0.15
0.2

0.25

0 0.2 0.4 0.6 0.8 1

p(1-p)

p

Figure 7.1: Influence of asymmetry on the yield of the Neumann Filter.

7.2 Calculation of Means - An Application for Func-

tional Equations

7.2.1 Derivation of a suitable Speedup Formula

Task: Runtime comparsion of 3 computers

� Computer A: SUN-SPARC classic (to be compared with:)

� Computer B: PC Pentium 90 xxx

� Computer C: HP 9000/720

Example 7.8 Running time of Program 1

Computer Time TX Speedup TA/TX
CA 10.4 sec 1
CB 8.1 sec 1.28
CC 7.9 sec 1.32
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Problem 1 Result is not representative.

Example 7.9 Running time of Program 2

Computer Time TX Speedup TA/TX
CA 2.7 sec 1
CB 4.3 sec 0.63
CC 2.6 sec 1.04

Solution 1 Measure running times on a representative set of benchmarks (based on statistics
of the applications of a typical user)

Example 7.10 Benchmarks I1, I2, I3

Computer I1 I2 I3 T̄
CA 1 2 100 34.3
CB 2 4 47 17.7

• Speedup T̄A/T̄B = 1.93

• ⇒ CB is almost twice as fast as CA?

• No, only for benchmark I3!

Problem 2 Speedup S1 = T̄A/T̄B is a relative measure, but in the previous example, S is
determinated only by Benchmark I3 (largest value).

Definition 7.8 Let x1, . . . , xn ∈ R, then A : Rn → R with

A(x1, . . . , xn) =
1

n

n∑
k=1

xk

is the Arithmetic Mean of x1, . . . , xn.

Definition 7.9 Let α1, . . . , αn (β1, . . . , βn) be the running times of Computer A (Com-
puter B) on the Benchmarks I1, . . . , In. Then the Speedup S1 is defined as:

S1(CA, CB) =
A(α1, . . . , αn)

A(β1, . . . , βn)
=

∑n
k=1 αk∑n
k=1 βk

Solution 2 Calculate the sum of the ratios instead of the ratio of the sums!

Definition 7.10

S2(CA, CB) = A

(
α1

β1

, . . . ,
αn
βn

)
=

1

n

n∑
k=1

αk
βk



150 7 Statistics and Probability

Application of S2 on the previous example:

S2(CA, CB) = A(
1

2
,
1

2
,
100

47
) =

1
2

+ 1
2

+ 100
47

3
= 1.04

S2(CB, CA) = A(2, 2,
47

100
) =

2 + 2 + 0.47

3
= 1.49

⇒ CA faster than CB, or CB faster than CA?

Problem 3 S2(CA, CB) 6= 1

S2(CB, CA)

Example 7.11 Calculation of the Speedup

Computer Runtime. of Benchm. I1 Runtime. of Benchm. I2

CA 1 10
CB 10 1

S2(CA, CB) = S2(CB, CA) =

(
1

10
+ 10

)
· 1

2
= 5.05

Expected: S2 = 1!

Conjecture: Geometric Mean solves the problem

Definition 7.11 G : (R\{0})n → R with

G(x1, . . . , xn) = n
√
x1 · . . . · xn

is the Geometric Mean of x1, . . . , xn.

Definition 7.12

S3(CA, CB) = G

(
α1

β1

, . . . ,
αn
βn

)
= n

√√√√ n∏
k=1

αk
βk

is called User Speedup.

Remark: S3 solves problems 3 !

S3(CA, CB) = n

√√√√ n∏
k=1

αk
βk

=
n∏
k=1

α
1/n
k

β
1/n
k

=
1∏n

k=1

β
1/n
k

α
1/n
k

=
1

S3(CB, CA)
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7.2.2 Requirements for a speedup function M : Rn
+ → R+

A speedup function of relative quantities must fulfill the following functional equations:

1. M(x, . . . , x) = x

2. M(x1, . . . , xn) ·M(y1, . . . , yn) = M(x1y1, . . . , xnyn)

3. M(x1, . . . , xk) = M(xπ(1), . . . , xπ(k)) for each permutation π on {1, . . . , k}
Explanation of requirement 2:

CA CB CC
10x 2x

20x

- -

-

S(CA, CB) · S(CB, CC) = S(CA, CC)

⇔M(
α1

β1

, . . . ,
αn
βn

) ·M(
β1

γ1

, . . . ,
βn
γn

) = M(
α1

γ1

, . . . ,
αn
γn

)

⇔M(x1, . . . , xn) ·M(y1, . . . , yn) = M(x1y1, . . . , xnyn)

Theorem 7.5 The Geometric Mean G(x1, . . . , xn) is the one and only function M : Rn
+ →

R+, which fulfills the requirements 1,2 and 3.

Proof:

M(x1, . . . , xn)n = M(x1, . . . , xn) ·M(x2, . . . , xn, x1) · . . . ·M(xn, x1, . . . , xn−1)

= M(x1 · . . . · xn, . . . , x1 · . . . · xn)

= x1 · . . . · xn

7.2.3 Application / Case Study: Randomized Depth-First Search

Randomized Algorithms

Definition 7.13 An algorithm A which gets in addition to its input I a sequence of
random numbers is called randomized algorithm.

Note: In general the runtime of A (for fixed inputs I) depends on the random numbers.
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Search Tree

u esuccess fail

Depth-first-search(Node, Goal)
If GoalReached(Node, Goal) Return(“Solution found”)
NewNodes = Successors(Node)
While NewNodes 6= ∅

Result = Depth-first-search(First(NewNodes), Goal)
If Result = “Solution found” Return(“Solution found”)
NewNodes = Rest(NewNodes)

Return(“No solution”)

Figure 7.2: The algorithm for depth-first search. The function “First” returns the first
element of a list, and “Rest” the rest of the list.

7.2.4 Depth-First Search

Depth-first-search searches the binary tree recursively until one solution was found.
Randomized Depth-first-search: random choice of left/right successor.
many different possible runtimes (runtime distribution) for fixed tree.

Example 7.12 4 different trees each with a solution:

�
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Runtime t = 5
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�
�

@
@
@
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Runtime t = 2

6

-

n(t)

t

1 u u u u
1 2 3 4 5 6

Runtimes: t = 2, 3, 5, 6
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7.2.5 How to measure speedup for such randomized algorithms?

⇒ S3(C1, Cp) = G

(
α1

β1

, . . . ,
αn
βn

)
?

not meaningful since assignment αi ↔ βi does not exist!
but:

S3(CA, CB) = G

(
α1

β1

, . . . ,
α1

βm
;
α2

β1

, . . . ,
α2

βm
; . . . ;

αn
β1

, . . . ,
αn
βm

)
• All possible ratios are calculated.

• Proceeding as above, but requirement is meaningless.

• New axioms, thus different (more difficult) proof.

7.3 Exercises

Exercise 7.1 Define the term ”random number generator” in analogy to the term ”random
bit generator”. Instead of bits we now allow numbers from a finite set N .

Exercise 7.2 Can the the Kolmogorov complexity of a sequence S be measured in practice?
Dioscuss this questions with:
a) Write pseudocode of an program that finds the shortest C-program that outputs the

given sequence S. Based on the grammar of the language C this program generates all
C-programs of length 1, 2, 3, . . .. Each generated C-program now is executed and the
produced sequence compared with S.

b) Which problems appear with this program?

c) Modify the program such that it approximates the Kolmogorov complexity of a given
sequence S.

Exercise 7.3



154 7 Statistics and Probability

a) Why is the period of a Linear Congruential Generator bounded above by the value of the
modulus m? How could the generator be modified (for fixed m), to increase the period
significantly?

b) Experiment with generators of the form xn = (xn−1 + xn−2) mod m and find cases for x0

and m, where the period is longer than m.

c) Consider generators of the form xn = (xn−1 + xn−2 + xn−3) mod m and find cases for x0

and m, where the period is longer than m2.

d) Analyse the generators of the form xn = (xn−1 + xn−2 + . . .+ x0) mod m with x0 = 1 on
periodicity.

e) Prove by induction: If x1 = x0 = 1 and xn = 2 · xn−1 for n ≥ 2, then it also holds
xn = 2n−1 for n ≥ 1.

Exercise 7.4
a) Calculate the expected value and standard deviation of a true binary random variable.

b) Draw the density function of a sum of 10, 100, 1000, 10 000 good random bits. Use the
built-in Mathematica function Random or the Octave function rand. Then determine for
each of the sums the sample standard deviation.

Exercise 7.5
a) Implement the mentioned linear congruential generator of the form xn = (axn−1 +b) mod

m with a = 7141, b = 54773 and m = 259200 in a programming language of your choice.

b) Test this generator on symmetry and periodicity.

c) Repeat the test after applying the Neumann Filter.

Exercise 7.6
a) Show that the bit sequence 110110110101010101010 passes the symmetry test.

b) Would you accept this sequence as a random bit sequence? Why?

c) Why is the symmetry test not sufficient to test the quality of a random number generator?

d) Suggest different randomness tests and apply them to the sequence.

Exercise 7.7 What can you say theoretically about the period of the BBS generator?

Exercise 7.8
Show that the length of a finite bit sequence (an)n∈{0,1} with independent bits gets shortened
by applying the Neumann-filter by approximately the factor p(1−p), if the relative proportion
of ones is equal to p. (Theorem 7.4)
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7.4 Principal Component Analysis (PCA)

In multideminsional data sets quite often some variables
are correlated or even redundant, as shown in the 2-dim.
scatterplot beside. We may then for example reduce the
dimensionality of the data. We follow chapter 12 in [7].
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Given is a set of data points (x 1, . . . ,xN), each xn being a vector of D dimensions. We want
to project the points into a lower dimensional space with M < D dimensions. We start with
looking for the direction in D-dim. space with highest variance of the data. Let u1 a unit
vector in this direction, i.e. uT

1 u1 = 1. We project the data points xn onto this direction
yielding the scalar value uT

1 xn. The mean of the projected data is

1

N

N∑
n=1

uT
1 xn = uT

1

1

N

N∑
n=1

xn = uT
1 x̄

and their variance
1

N − 1

N∑
n=1

(uT
1 xn − uT

1 x̄ )2 = uT
1 Su1

To see this, the definition of the covariance of two scalar variables xi and xj is

S ij =
1

N − 1

N∑
n=1

(xni − x̄i)(xnj − x̄j)

where xni is the i-th component of the n-th data sample. The covariance matrix is

S =
1

N − 1

N∑
n=1

(xn − x̄ )(xn − x̄ )T

Thus

uT
1 Su1 =

1

N − 1

N∑
n=1

uT
1 (xn − x̄ )(xn − x̄ )Tu1 =

1

N − 1

N∑
n=1

uT
1 (xn − x̄ )uT

1 (xn − x̄ )

=
1

N − 1

N∑
n=1

(uT
1 xn − uT

1 x̄ )(uT
1 xn − uT

1 x̄ ) =
1

N − 1

N∑
n=1

(uT
1 xn − uT

1 x̄ )2

In order to find the vector u1 which produces maximum variance uT
1 Su1, we will maximize

this quantity by deriving it w.r.t. u1. To prevent ‖u1‖ → ∞ we have to use the normalization
condition uT

1 u1 = 1 as a constraint, which yields the Lagrangian

L = uT
1 Su1 + λ1(1− uT

1 u1).
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and the necessary condition for a maximum is

∂L

∂u1

= 2Su1 − 2λ1u1 = 0,

yielding
Su1 = λ1u1,

which is the eigenvalue equation for the covariance matrix S . Obviously, if we choose λ1 as
the largest eigenvalue, we will obtain highest variance, i.e.

uT
1 Su1 = uT

1 λ1u1 = λ1.

From this we now can conclude

Theorem 7.6 The variance of the data points is maximal in the direction of the eigenvector
u1 to the largest eigenvalue of the covariance matrix S. This maximal eigenvector is called
the principal component.

Application to the above data points yields the two
eigenvectors

u1 =

( −0.788
0.615

)
u2 =

( −0.615
−0.788

)
with the corresponding eigenvalues λ1 = 0.128 and λ2 =
0.011. The graph shows that the principal component
u1 points in the direction of highest variance.

After finding the direction with highest variance, we partition the D-dimensional space
into u1 and its orthogonal complement. In the resulting (D − 1)-dimensional space we
again determine the principal component. This procedure will be repeated until we have M
principal components. The simple result is

Theorem 7.7 The eigenvectors u1 . . .uM to the M largest eigenvalues of the S determine
the M orthogonal directions of highest variance of the data set (x 1, . . . ,xN).

Proof: by induction:
For M = 1 we refer to theorem 7.6. Now assume, the M directions with highest variance
are already determined. Since uM+1 has to be orthogonal to u1 . . .uM , we will require the
constraints

uT
M+1u1 = uT

M+1u2 = . . . = uT
M+1uM = 0.

Similarly to the above procedure we will determine uM+1 by maximizing the variance of
the data in the remaining space. As above, the variance of the data in the direction uM+1

is uT
M+1SuM+1. Together with the above M orthogonality constraints and the normality

constraint uT
M+1uM+1 = 1 we have to find a maximum of the new Lagrangian

L = uT
M+1SuM+1 + λM+1(1− uT

M+1uM+1) +
M∑
i=1

ηiu
T
M+1u i
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with respect to uM+1. It turns out (exercise 7.11) that the solution uM+1 has to fulfill

SuM+1 = λM+1uM+1

i.e. it is again an eigenvector of S. Obviously we have to select among the D −M not yet
selected eigenvectors the one with the largest eigenvalue. �

We now apply PCA to the Lexmed data from example 4.4 in section 4.3. Some raw data
samples are:

19 1 0 0 1 0 1 0 1 1 0 362 378 13400 0

13 1 0 0 1 0 1 0 1 1 1 383 385 18100 0

18 2 0 0 1 1 0 0 0 0 0 362 370 9300 0

73 2 1 0 1 1 1 0 1 1 1 376 380 13600 1

36 1 0 0 1 0 1 0 1 1 0 372 382 11300 0

18 2 0 0 1 0 1 0 1 0 0 366 378 13000 0

19 2 0 0 1 0 0 0 0 0 1 372 378 6400 0

62 1 0 0 1 0 1 0 1 1 0 376 390 22000 0

After normalization of the data to the interval [0, 1] we obtain the eigenvalues:

0.47 0.24 0.19 0.16 0.16 0.11 0.10 0.039 0.036 0.023 0.023 0.016 0.016 0.01 0.004

Due to the step after the 7-th largest eigenvalue, a transformation of the data to the 7-
dimensional space spanned by the eigenvectors of the 7 largest eigenvalues may be considered.
If for visualization we plot the data to the two principal components (eigenvectors to the
two largest eigenvalues), we get for the raw data the left and for the normalized data the
right diagram:
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The corresponding two eigenvectors for the raw data are:

(−1, 0.2,−0.03,−0.02,−0.003,−0.06,−0.3,−0.04,−0.2,−0.2,−0.1,−3,−4,−10000,−0.004) · 10−4

(100,−0.10, 0.16, 0.05,−0.04, 0.17, 0.27, 0.06, 0.09, 0.08,−0.03,3.34,5.66,− 0.02, 0.17) · 10−2

The first vector projects on the leukocyte value and the second on a combination of the age
and the fever values. Why?

7.4.1 Applications of PCA

• Dimensionality reduction

• Data compression

• Extraction of features from pixel images

• Data visualization

An Image compression example1

• 5000 gray-scale images with 32× 32 = 1024 pixels each.

• Application of PCA with 100 principal components.

• I.e. projection on 100-dimensional subspace.

• Transformation of compressed images back into original space.

100 Images2

1From Andrew Ng’s excellent lecture “Machine Learning”: ml-class.org.
2From ml-class.org.

ml-class.org
ml-class.org
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Original and Recovered Images3

Bill Clinton4

36 Principal components5

Scalability

• Would this work with 1 Megapixel images also?

• No! Why?

3From ml-class.org.
4From ml-class.org.
5From ml-class.org.

ml-class.org
ml-class.org
ml-class.org
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• D = 106 dimensional space!

• 5000 images = 5000 data points in 106-dimensional space.

• N = 5000 data points define a 4999-dimensional hyperplane.

• Thus we need: M � N − 1 = 4999.

• Otherwise: Underdetermined problem!

• Compression by a factor of 106/5000 = 200.

Back to Andrew Ng’s Example

• D = 1024.

• 5000 images = 5000 data points in 1024-dimensional space.

• 5000 points in M = 100 dim. space.

• M = 100� 4999 = N − 1.

• Structure of data can be conserved.

7.5 Estimators

Estimators & Properties
This chapter covers the estimation of unknown parameters. Most often a parameterized dis-
tribution given, but with unknown true parameters. The goal is to estimate these parameters
with the help of samples x (from the true distribution). We collect all parameters of interest
in the variable γ First we start with the definition of an estimator followed by some easy
examples and come back to this later when we talk about maximum likelihood estimators.
An estimator Tγ is used to infer the value of an unknown parameter γ in a statistical model.
It is a function defined as:

Tγ : X 7→ Γ

where X is a sample space with elements x := {x1, · · · ,xn} ∈ X
Normally we will not be able to estimate the true parameter exactly and so we have to define
some properties that assures a certain quality of the estimations found with the help of T .
The true parameter is unknown and so we have to look for other reasonable criteria. For
example the expected value of the estimator should be the parameter to estimate.
Desireable properies are:

� unbiasedness: E[Tγ] = γ

� minimum variance: An unbiased estimator T ∗γ has minimum variance if

var[T ∗γ ] ≤ var[Tγ]

for all unbiased estimators T .
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Sample Mean & Sample Variance
We can formulate the calculation of the sample mean and variance in terms of estimators:
Let the xj be samples from a distribution with mean µ and variance σ2

� The function x̄ : Rn 7→ R

x̄ =
1

n

n∑
j=1

xj

is called the sample mean

� The function s2 : Rn 7→ R

s2 =
1

n− 1

n∑
j=1

(xj − x̄)2

is called the sample variance

Example: Sample Mean & Sample Variance
Sampling from a Gaussian distribution with mean µ = 5 and variance σ2 = 2. The black
line is a plot of the true Gaussian and the green line is a Gaussian were the mean and the
variance is calculated with x̄ and s2 respectively.
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normpdf: µ=5, σ
2
=2

estimation: µ=3.29, σ
2
=3.92

# samples: 2
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=2.28

# samples: 20
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0.05

0.1
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normpdf: µ=5, σ
2
=2

estimation: µ=5.05, σ
2
=2.02

# samples: 1000

As expected the estimation becomes better the more samples are used.

Unbiasedness of Sample Mean
As mentioned before there are some properties we want for an estimator to hold. We are
going to proof the unbiasedness and leave the proof for the minimum variance criterion as
an exercise to the reader.
Proof:

E[x̄] =
1

n

n∑
j=1

E[xj] = µ

�

Unbiasedness of Sample Variance
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Proof: We can rewrite s2 as:

s2 =
1

n− 1

n∑
j=1

(xj − µ)2 − n

n− 1
(x̄− µ)2 then

E[s2] =
1

n− 1

n∑
j=1

E[(xj − µ)2]− n

n− 1
E[(x̄− µ)2]

=
1

n− 1

n∑
j=1

var[xj]− n

n− 1
var[x̄]

=
n

n− 1
σ2 − n

n− 1

σ2

n
=
n− 1

n− 1
σ2 = σ2

�

Sample Mean & Sample Variance (variances)
We can not only calculate the expected value of estimators, but also their variance. It is an
exercise to proof the following:
The variance varx̄ of the estimator x̄ is given by

var[x̄] =
1

n
σ2

var[s2] =
2

n− 1
σ4

Expectations and Covariances
The expectation of some function f(x) under a probability distribution p(x) is given by

E[f ] =

∫
p(x)f(x) dx

and the variance of f(x) is defined by

var[f ] = E[(f(x)− E[f(x)])2]

= E[f(x)2]− E[f(x)]2

For two random variables x and y, the covariance is defined by

cov[x, y] = E[(x− E[x])(y − E[y])]

= E[xy]− E[x]E[y]

Covariance and Independence
Remember, that for two independent variables x and y we have p(x, y) = p(x) · p(y). Thus

E[xy] =

∫ ∫
p(x, y)xy dx dy =

∫ ∫
p(x)p(y)xy dx dy

=

∫
p(y)y dy

∫
p(x)x dx = E[x]E[y]

and we get for independent variables

cov[x, y] = 0
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7.6 Gaussian Distributions

Definition 7.14 A Gaussian distribution is fully specified by a D-dimensional mean
vector µ and D ×D covariance matrix Σ with the density function

p(x ;µ,Σ) = N (x |µ,Σ) =
1

(2π)
D
2 |Σ | 12

exp

(
−1

2
(x − µ)TΣ−1(x − µ)

)

• That µ is the mean and Σ the covariance matrix of the normal distribution, has to be
proven!

• If the variables x1, . . . , xD are all independent, then Σ is diagonal! Why?

Examples: Mean Vector and Covariance Matrix

Example: Mean Vector
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Example: Covariance Matrix
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Example: Covariance Matrix II

−5

0

5

−5

0

5

0

0.05

0.1

0.15

0.2

Σ =

[
1 0
0 1

] −5

0

5

−5

0

5

0

0.05

0.1

0.15

0.2

Σ =

[
1 0.5

0.5 1

] −5

0

5

−5

0

5

0

0.05

0.1

0.15

0.2

Σ =

[
1 0.8

0.8 1

]

Example: Covariance Matrix III
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Covariance Matrix Properties
The covariance matrix Σ is symmetric

� Σ is invertible and Σ−1 is symmetric

� All eigenvalues are real

� All eigenvectors are orthogonal

� Eigenvectors point in the direction of principal axes of the ellipsoid.

The covariance matrix Σ is positive definite

� =⇒ xTΣx > 0 ∀x ∈ Rn \ {0}
� All eigenvalues are positive

� Σ is invertible and Σ−1 is positive definite

Diagonalization of the Covariance Matrix
Let u1 . . .uD the eigenvectors of Σ . Then the transformation x 7→ y with

yi = uT
i (x − µ)

makes all variables yi pairwise independent with diagonal covariance matrix Σ ′ and zero
mean.
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Product of Gaussian Distributions
The product of two Gaussian distributions is given by

N (µa,Σ a) · N (µb,Σ b) = zcN (µc,Σ c)

where

µc = Σ c

(
Σ−1

a µa + Σ−1
b µb

)
and Σ c =

(
Σ−1

a + Σ−1
b

)−1

Marginal Gaussian Distribution
Recall, in general, the marginal distribution for a joint random variable p(x ,y) is given by

p(x ) =

∫
p(x ,y) dy

Given a joint distribution

p(x ,y) = N
([
a
b

]
,

[
A C
CT B

])
the marginal Gaussian distribution is simply given by

p(x ) = N (a,A)

Conditional Gaussian Distribution
The conditional distribution, in general, is given by

p(x |y) =
p(x ,y)

p(y)

Given a joint distribution

p(x ,y) = N
([
a
b

]
,

[
A C
CT B

])
the conditional Gaussian distribution is given by

p(y |x ) = N (b+ CA−1(x − a), B − CA−1CT
)

Marginal & Conditional Gaussian Distribution

xa

xb = 0.7
xb

p(xa, xb)

0 0.5 1
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1
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p(xa)

p(xa|xb = 0.7)
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7.7 Maximum Likelihood

Which one of the following normal distributions maximizes the probability for independently

observing the given data points?

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

p
(x

)

x

Maximum Likelihood for Gaussian distributions
Let x1, . . . , xn, be i.i.d (independently and identically distributed) according to N (µ, σ2) and
x := {x1, · · · , xn}, then the joint density is:

Lx(µ, σ
2) = p(x|µ, σ2) =

n∏
j=1

p(xj|µ, σ2)

=
n∏
j=1

1√
2πσ2

exp

(
−1

2

(xj − µ)2

σ2

)
The log likelihood function is given by

lnLx(µ, σ
2) = − 1

2σ2

n∑
j=1

(xj − µ)2 − n

2
lnσ2 − n

2
ln(2π)

Maximizing lnLx(µ, σ
2) with respect to µ, we obtain the maximum likelihood solution given

by

µML =
1

n

n∑
j=1

xj

what we recognize as the sample mean.

Maximizing lnLx(µ, σ
2) with respect to σ2 leads to

σ2
ML =

1

n

n∑
j=1

(xj − µML)2

which is different from the sample variance and therefore biased.

The Likelihood Function
The ”Maximum likelihood estimator” is a mapping from samples to parameter values for
which the likelihood function becomes a maximum. The formal definition of a likelihood
function is:
Let Γ be the parameter space and pγ the joint density w.r.t. γ, then the likelihood function
Lx is defined as:
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Lx : Γ 7→ R+

Lx(γ) := p(x|γ) ∀γ ∈ Γ ∀x := {x1, · · · ,xn} ∈ X
The likelihood function is a function of the parameters γ, where as the joint density is a
function of x !
The difference is, that we normally have a probability distribution pγ(x) with parameters γ
given and we evaluate this function at various inputs x. We now assume, that we do know
the parameters, but that have given some samples x from the true underlying distribution
and our goal is to estimate these parameters. We do this by searching for some parameter
values that maximize the likelihood function (and so maximize also the probability density).

Maximum Likelihood
We call the estimator T maximum likelihood estimator (ML estimator) if

T : X 7→ Γ with

Lx(T (x)) = sup
γ∈Γ

Lx(γ), ∀x := {x1, · · · ,xn} ∈ X
In many cases it is possible to derive the likelihood function and set its derivative with
respect to the parameters to zero. Sometimes it is also easier to maximize the so called log
likelihood lx(γ) := lnLx(γ)

Bernoulli Distribution
Outcome is either a ”success” or ”failure” (e.g. coin flipping with heads = 1 and tails = 0)

pµ(x = 1) = µ

pµ(x = 0) = 1− µ
Bernoulli Distribution:

Bernµ(x) = µx(1− µ)1−x

E[x] = µ

var[x] = µ(1− µ)

Example: ML for Bernoulli distributions
Let xj, j ∈ Nn, be i.i.d according to Bernµ(xj) with p(xj = 1) = µ and p(xj = 0) = 1 − µ.
Then the joint probability is given by

p(x|µ) = µ
P
xj(1− µ)n−

P
xj , x = (x1, · · · , xn) ∈ {0, 1}n

Solving the equation:

∂

∂µ
lnLx(µ) =

1

µ

n∑
j=1

xj − 1

1− µ(n−
n∑
j=1

xj) = 0

leads to

µML =
1

n

n∑
j=1

xj
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7.8 Linear Regression

Maximum Likelihood Linear Regression
Assumption:

yi = aT f (xi) + εi

where εi are i.i.d according to εi ∼ N (0, σ2)

-1

 0

 1

 2

 3

 4

 5

 0  0.5  1  1.5  2  2.5  3

y

x

y

xi

i

εi

Figure 7.3: Example of sample points drawn from a function a1 sinx + a2 cosx with added
gaussian noise εi.

p(εi;σ
2) =

1√
2πσ2

exp

(
−(εi)

2

2σ2

)
This implies that

p(yi|xi; a , σ2) =
1√

2πσ2
exp

(
−(yi − aT f (xi))

2

2σ2

)

ML Linear Regression | Likelihood Function
Given X (the design matrix, which contains all the xi’s) and y (containing all the yi’s)

p(y |X; a , σ2) =
n∏
j=1

1√
2πσ2

exp

(
−(yj − aT f (xj))

2

2σ2

)

ln p(y |X; a , σ2) = − 1

σ2

1

2

n∑
j=1

(yj − aT f (xj))
2 − n

2
lnσ2 − n

2
ln(2π)

Note: maximizing ln p(y|X; a, σ2) w.r.t. a is the same as minimizing

1

2

n∑
i=1

(yi − aT f (xi))
2

ML linear regression = Least squares solution!



7.8 Linear Regression 169

ML Linear Regression | Determining aML

∇a ln p(y |X; a , σ2) =
1

σ2

n∑
j=1

(yj − aT f (xj))f (xj)

setting this to zero

0 =
n∑
j=1

yjf (xj)−
n∑
j=1

(aT f (xj))f (xj)

=
n∑
j=1

yjf (xj)−
n∑
j=1

(f (xj)f (xj)
T )a

=
n∑
j=1

yjf (xj)︸ ︷︷ ︸
F Ty

−
n∑
j=1

(f (xj)f (xj)
T )a︸ ︷︷ ︸

F TFa

ML Linear Regression | Determining aML

0 =
n∑
j=1

yjf (xj)︸ ︷︷ ︸
F Ty

−
n∑
j=1

(f (xj)f (xj)
T )a︸ ︷︷ ︸

F TFa

with

F =


f (x1)T

f (x2)T

...
f (xn)T


Remember: The matrix F is equal to the matrix M we know from section 6.3 on least
squares.

ML Linear Regression | Determining aML

We see, that aML is given by

aML = (F TF )−1F T · y

Furthermore we notice, that maximizing the likelihood (under Gaussian noise assumption) is
equivalent to solving least squares!
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ML Linear Regression | Determining σ2

Approach:

� determined the ML solution of the weights denoted by aML

� subsequently use aML to find σ2
ML by

σ2
ML =

1

n

n∑
i=1

(yi − aT
MLf (xi))

2

ML Linear Regression | Predictive Distribution
The probabilistic model we have now, leads us to the predictive distribution. For some new
prediction input values x∗, the prediction output y∗ is distributed according to

p(y∗|x∗; aML, σ
2
ML) = N (aT

MLf (x∗), σ
2
ML

)
Fitting a 9th order polynomial to samples of the function sin(2πx) with Gaussian noise.
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Bayesian Inference
Towards a more Bayesian treatment:

posterior ∝ likelihood × prior

we have to do the following steps:

� define prior distribution over the parameters a as p(a)

� obtain the likelihood p(y|X,a)

� calculate the posterior p(a |X, y) ∝ p(y|X,a)p(a)

Example: Bayesian Inference

� The likelihood function was given by

p(y|X,a ;σ2) =
n∏
i=1

N (yi|aT f (xi), σ
2
)

� For simplicity we assume a zero-mean isotropic Gaussian prior over a with parameter
α

p(a ;α) = N (a |0, αI)

� The corresponding posterior distribution over a is then given by

p(a |y,X, α;σ2) = N (a |mn, Sn)

where

mn =
1

σ2
SnF

Ty and S−1
n =

1

α
I +

1

σ2
F TF

Example: Bayesian Inference
The log of the posterior distribution is given by the sum of the log likelihood and the log of
the prior as:

ln p(a |X, y) = − 1

2σ2

n∑
i=1

(
yi − aT f (xi)

)2 − 1

2α
aTa + const

Maximizing the posterior (MAP) distribution w.r.t. a leads to

aMAP = (λI + F TF )−1F Ty with λ =
σ2

α
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Example: MAP
In this example we fit a straight line to data coming from y = 0.5x − 0.3 with N (0, 0.04)
noise. We can directly plot the parameter space:

With α = 0.5, the parameter prior is
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Example: MAP
Now we sequentially receive some data

likelihood prior/posterior data space
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Reminder: Conditional Probabilities
discrete Variables:

p(A) =
∑
B

p(A,B)

continuous variables:

p(x, y) =

∫
p(x, a, y)da

conditioning:

p(x|y) =
p(x, y)

p(y)
=

∫
p(x, a, y)

p(y)
da

=

∫
p(x, a, y)

p(a, y)

p(a, y)

p(y)
da =

∫
p(x|a, y)p(a|y)da

Bayesian Linear Regression
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In practice, we want to make predictions of t for new values of x∗. This requires to evaluate
the predictive distribution defined by

p(y∗|x∗, y,X, α;σ2) =

∫
p(y∗|x∗, y,X,a ;σ2)p(a |y,X, α;σ2) da

The convolution is a Gaussian with

p(y∗|x∗, y,X, α;σ2) = N (mT
n f (x∗), σ

2
n(x∗)

)
where

σ2
n(x∗) = σ2 + f (x∗)

TSnf (x∗)

Example: Comparison between ML and Bayesian approach
Fitting a 9th order polynomial to samples of the function sin(2πx) with Gaussian noise.

Maximum Likelihood Bayes approach
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Final Comments
In a fully Bayesian setting we should introduce priors over both, α and σ2, but this is
analytically intractable:
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p(y∗|y) =

∫∫∫
p(y∗|a , σ2)p(a |y, α, σ2)p(α, σ2) da dα dσ2

Have a look at

� Empirical Bayes: maximizing the marginal likelihood

� Laplace approximation: local Gaussian approximation of the posterior

� Expectation maximization (EM)
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7.9 Exercises

Exercise 7.9 Calculate the probability distribution of the mean of n independant identically
distributed discrete random variables X1, . . . , Xn, with

p(Xi = 0) = p(Xi = 1) = p(Xi = 2) = p(Xi = 3) = p(Xi = 4) = 1/5

for n = 1, 2, 3, 4.

Exercise 7.10 Prove the following identities for derivatives w.r.t. vectors:

a)
∂(aTx )

∂x
= a .

b)
∂(x TAx )

∂x
= (A + AT )x .

Exercise 7.11 To complete the proof of theorem Theorem 7.7, find a maximum of the
variance uT

M+1SuM+1 with respect to uM+1 under the constraints uT
M+1uM+1 = 1 and

uT
M+1u1 = uT

M+1u2 = . . . = uT
M+1uM = 0.

Exercise 7.12 Apply PCA to the Lexmed data. The data file appraw1-15.m with the
variables number 1 to 15 (variable number 16 removed) can be downloaded from the course
website.
a) Determine the the eigenvalues and eigenvectors for the raw data.

b) Normalize the data to the interval [0, 1] and repeat PCA.

c) Explain the differences.

d) Select the largest eigenvalues and give the transformation matrix for transforming the
data into a lower dimensional space.

Exercise 7.13 Plot various two-dimensional normal distributions N (µ,Σ) and validate em-
pirically the following propositions. You may use for example

N
([

1
1

]
,

[
10 0
0 1

])
and N

([−1
−1

]
,

[
1 0
0 10

])
.

a) The sum of two normal distributions is not a normal distribution.

b) The maximum of two normal distributions is not a normal distribution.

c) The product of two normal distributions is a normal distribution.

Exercise 7.14 Show that cov[x, y] = E[xy]− E[x]E[y].

Exercise 7.15 Give an example for an estimator with 0 variance.

Exercise 7.16 Show that
a) E[x̄] = µ.

b) var[x̄] = 1
n
σ2.

c) for the sample variance it holds:

s2 =
1

n− 1

n∑
j=1

(xj − µ)2 − n

n− 1
(x̄− µ)2.
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Exercise 7.17 Give an example for an unbiased estimator for the mean with higher variance
than the sample mean.

Exercise 7.18 Let U(a, b) the uniform distribution over the interval [a; b] ⊂ R with a < b.
Further x := (x1, · · · , xn) ∈ Rn are ordered samples from an unknown U(a, b) s.t. x1 ≤ · · · ≤
xn. The parameter space is denoted by Γ = {(a, b) ∈ R2|a < b}. Define a density function
ua,b of U(a, b) and the likelihood function. Determine a maximum likelihood estimator for
(a, b).

Exercise 7.19 Show that the expectation of a variable x that is Gaussian distributed with
N (µ, σ2) is µ or in other words: E[x] =

∫∞
−∞N (µ, σ2)xdx = µ. You can use the fact, that

a Gaussian is a probability distribution and therefore integrates to 1 and that for an odd
function f the following holds true:

∫ a
−a f(x)dx = 0.

Exercise 7.20 Show that estimating the maximum posterior (MAP) with Gaussian likeli-
hood and Gaussian prior (as in the lecture) with

aMAP = (λI + F TF )−1F Ty

is equal to ”regularized least squares” which is the original least squares formulation plus
some penalty term for high parameter values:

E(a) =
1

2

n∑
i=1

(aTf(xi)− yi)2 +
λ

2
||a||2

Hint: Calculate the derivative of E with respect to a and set it to zero.

Exercise 7.21 Prove that the expected value is linear, i.e. that E[ax+ b] = aE[x] + b for
a) discrete variables.

b) continuous variables.



Chapter 8

Function Approximation

8.1 Linear Regression – Summary

We want to fit a function

f(x ) = a1f1(x ) + · · ·+ akfk(x ) = aT f (x )

with k unknown parameters a1, . . . , ak through the n data points (x 1, y1), . . . , (xn, yn). If we
substitute all the points into the ansatz, requiring our function to hit all n points, i.e.

f(x i) = yi,

we get the linear system
a1f1(x 1) + . . .+ akfk(x 1) = y1

...
...

...
a1f1(xn) + . . .+ akfk(xn) = yn.

In matrix notation we get

M · a = y with M ij = fj(x i),

n > k the system is overdetermined and normally has no solution.

n < k the system is underdetermined and normally has infinitely many solutions.

We examined different solutions for the linear regression problem:

Overdetermined case:

• Least Squares / Pseudoinverse

• Maximum Likelihood

• Bayesian Linear Regression

Underdetermined case:

• Pseudoinverse
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Methods for solving M · a = y

Overdetermined case:

Least Squares / Pseudoinverse:

minimize ||M a − y ||2 â = (M TM )−1M Ty

Maximum Likelihood:

maximize p(X |a) â = (M TM )−1M Ty

Bayesian lin. Regression (MAP = maximum posterior probab.):

maximize p(a |X ) â = (λI + M TM )−1M Ty

Regularized Least Squares:

minimize ||M a − y ||2 + λ||a ||2 â = (λI + M TM )−1M Ty

design matrix X = (x 1, . . . ,xn)

Methods for solving M · a = y

Underdetermined case:

� minimize ||a ||2 under the constraint M a − y = 0 . Solution: â = (M M T )−1M y

� compare (AI lecture)[?]: maximize Entropy of probability distribution under given
contraints

8.2 Radial Basis Function Networks

8.2.1 Introduction

Radial basis function networks (RBFs) are a form of supervised learning techniques that are
used to model or estimate an unknown function between a set of input-output pairs. The
idea of RBFs has been presented as a solution for non-linear classification problems. The
theory of RBFs had initiated from Cover whereby his theorem proved that a classification
problem is more likely to be linearly separated in a high dimensional space rather than in a
low dimensional space. Further discussion about the Cover’s theorem accompanied with a
detailing example will be presented in the next section.
Radial basis function networks are considered to be linear models with non-linear activation
functions. Linear approximation models had been studied in statistics for about 200 years,
and the theory is applicable to radial basis function networks (RBF) which are just one
particular type of linear models. The idea of radial basis function networks is similar to that
of multi layer perceptron neural networks with differences such as:

� Radial basis function as an activation function, rather than a sigmoid function.

� Three layer network with an input, one hidden and an output layer.

� No back propagation is included in solving for the output weights.
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There are two main applications for radial basis functions. The first is a solution of clas-
sification problems which will be briefly mentioned in the next section so to explain the
Cover’s theorem. The other idea of interest is utilizing RBFs as a solution for an approxima-
tion problem (i.e estimating a function that maps sets of input-output pairs) will be further
discussed and detailed.

8.2.2 RBFs for function approximation

Now the focus will be shifted to the form of RBFs used for function approximation. In other
ways answering the question of supervised learning problem, which could be stated as:
Given a set of input output pairs, attain the unknown function mapping the latter set.
To have a detailed idea of the subject a brief introduction to supervised learning will be
mentioned.

8.2.2.1 Supervised Learning

A problem in statistics with applications in many areas is to guess or to estimate a function
from a sample of input-output pairs with a little or no knowledge of the form of the function.
So common is the problem that it has different names in different disciplines (e.g. nonpara-
metric regression, function approximation, system identification, inductive learning).
In machine learning terminology, the problem is called supervised learning. The function
is learned from examples, which a teacher supplies. The set of examples, or training set,
contains elements which consist of paired values of the independent (input) variable x the
dependent (output) variable y. Mathematically given a vector n-patterns of a p-dimensional
vector x The training set (pairs of input and outputs) is given as:

T = {(x i, ŷi)}ni=1 (8.1)

This training set reflects that the outputs y are corrupted by noise. In other words the
correct value to the input x i, namely yi, is unknown. The training set only specifies ŷi which
is yi, plus a small amount of noise.

ŷi = f(x i) + ε (8.2)

Where ε is some form of Gaussian noise with zero mean and some covariance.

In real applications the independent variable values in the training set are often also affected
by noise. This type of noise is more difficult to model and we shall not attempt it. In any
case, taking account of noise in the inputs is approximately equivalent to assuming noiseless
inputs but an increased amount of noise in the outputs.

8.2.2.2 Nonparametric Regression

In regression problems there are two deviations the parametric and nonparametric approach.
Parametric regression is a form of regression whereby the functional relation of the input-
output pairs is assumed to be known, but may contain unknown parameters. This case is
not of interest, because it has a main disadvantage that the functional topology should be
known in advance to solve such a problem. This prior knowledge, is difficult to be found
especially in the case of complicated and highly nonlinear systems. Therefore the focus
will be shifted to the nonparametric approach, where no prior knowledge of the functional
mapping is required. Radial basis function networks are a form of nonparametric regression,
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that aim to find an underlying relation between inputs and outputs[24]. In other words the
goal of the radial basis function network is to fit the best values of some weights in order to
minimize a certain error defined by an error function.

8.2.2.3 Linear Models

A linear model of a function f(x ) takes the form:

f(x ) =
m∑
j=1

ajfj(x ) (8.3)

The model f is expressed as a linear combination of a set of m fixed functions (often called
basis functions by analogy to the concept of a vector being composed of a linear combination
of basis vectors). The aim of any network is to find the best possible weights aj so to
minimize the sum of the squared error that is often defined by the error function.

Activation Functions Before going into the details on how to solve for the weights we
discuss the activation functions (fj).There are several types of activation functions that are
used in neural networks, but the functions of interest are the radial functions. Radial func-
tions are a special class of functions. There characteristic features is that there response
decreases (or increases) monotonically with the distance from the central point.

� Gaussian which is the most commonly used:

fj(x ) = exp
−(||x i − cj||2)

2σ2
(8.4)

The Gaussian function decreases monotonically with the distance from the center as
shown in figure 8.1.

� Multiquadric:

fj(||x − c||) =

√
(||xi − cj ||)2 + b2 (8.5)

� Inverse Multiquadrics:

fj(||x − c||) =
1√

(||xi − cj ||)2 + b2

(8.6)

8.2.2.4 Radial Basis Function Networks

Radial functions are simply a class of functions. In principle, they could be employed in
any sort of model (linear or nonlinear) and any sort of network (single-layer or multilayer).
However, since Broomhead and Lowe’s[25], radial basis function networks (RBF networks)
have traditionally been associated with three layers as follows, see figure 8.2 :

� Input layer of dimensions representing the n patterns of the p-dimensional input vector
x

� Hidden layer containing the activation radial functions (such as Gaussian) with number
m
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Figure 8.1: Weights were set to a1 = 0.4,a2=0.7 and a3 = 0.9

Figure 8.2: Structure of a RBF network

� Linear output unit

The unknowns in the case of a linear RBF model are the weights aj’s that need to be found
and solved for. In order to solve for the weights the problem should be reformulated in a
sums of squared errors form.

Least Square Problem An error function of the weights should be defined and then an
optimization procedure will be used to attain them. Lets consider the overall picture again,
given a data set T = {(x i, ŷi)}ni=1 we have to estimate a function between these input and
output pairs. From figure 8.2 it can be seen that the output function is:

f(x ) =
m∑
j=1

ajfj(x ) (8.7)
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Then we define the error function as the sum of the squared errors, between the real valued
yi’s and the predicted ones from the RBF network as follows:

E(y, f(x )) =
1

2

n∑
i=1

(yi − f(xi ))
2

E(y, f(x )) =
1

2

n∑
i=1

(yi −
m∑
j=1

ajfj(xi ))

2

(8.8)

The objective now is to find the best set of the aj that minimizes the error function E of
equation (8.8). Mathematically formulated the above idea could be described as follows:

aj = arg min
(a1,...,aj ,...,am)

E(y, f(x )) (8.9)

Several algorithms had been suggested for such an evaluation[6], and maybe the most com-
mon is the gradient descent algorithm. This algorithm might have some problems like con-
vergence, getting stuck in a local minimum and so on.
Therefore, it would be better if there was a way to represent the above equation in a matrix
form, and then a single step to solve for the weights would be utilized[2]. For this formulation
consider the following:

� Let y =
(
y1 y2 . . . yn

)
T represent the desired outputs.

� Let a =
(
a1 a2 . . . am

)T
represent the weights that have to be determined.

� Let the matrix M =


f1(x1 ) f2(x1 ) . . . fm(x1 )
f1(x2 ) f2(x2 ) . . . fm(x2 )

...
...

. . .
...

f1(xn) f2(xn) . . . fm(xn)

 be the matrix of the RBFs

operating at the input points.

There for the above system could be transformed into the following form:

M a = y (8.10)

Therefore solving for the weights after this formulation is straight forward and requires only
the inversion of the M matrix.
Assuming the M is nonsingular and M −1 exists then the weights could be calculated using
the following equation as:

a = M −1y (8.11)

A special case of this solution is when the number of the hidden layer units (i.e Gaussian
Functions) is equal to that of the number of samples present by the training set T . In other
words the M -matrix is an n by n matrix, and there normal inversion exists in the case the
latter matrix was non-singular. On the other hand, if this matrix was not a square one
which is the most general case, whereby the number of hidden units m is less than that of
the training sample n, then the M −1-matrix could not be attained normally. Rather the
pseudo-inverse has to be calculated. To do this there are different methods some of which
are:

� QR-decomposition

� Single Value Decomposition (SVD)
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Concrete Example Consider the following three points (1, 3),(2, 2.1),(3, 2.5) to be ap-
proximated by a function. The RBFs used are Gaussian centered at each input point. The
objective of this example is to illustrate the effect of the choice of σ on the underlying func-
tion being approximated.
It is clear from figure 8.3, that having a small σ causes overfitting, and the choice of a big
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Figure 8.3: The effect of sigma

σ caused very high and low overshoots. The latter case could be explained by the fact that
choosing a high value for the σ consequently leads to attaining very high positive and nega-
tive values of the weights fitting the required points, so that the function thus approximated
could pass through all the points presented.

8.2.3 Over-fitting Problem

Consider that we have chosen the number of the basis functions to be the same number as
the training examples T , moreover we have chosen the centers of the radial basis function
networks to be the input points. This leads to the so-called problem of overfitting. As clear

Figure 8.4: Overfitting effect

from figure 8.4, the function which was supposed to be approximated is the one represented
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by the dashed line, but due to the latter configuration of the RBF it rather tended to
approximate the bold line, which is not the intended mapping.
The network described in this example, is a specific type of RBFs used solely for interpolation.
The problems of such a scheme are:

1. Poor performance on noisy data:

� As already known, we do not usually want the network’s outputs to pass through
all the data points when the data is noisy, because that will be a highly oscillatory
function that will not provide good generalization.

2. Computationally inefficient:

� The network requires one hidden unit (i.e. one basis function) for each training
data pattern, and so for large data sets the network will become very costly to
evaluate. The matrix inversion cost is typically O(n3) for n data points.

8.2.3.1 Improving RBFs

In order to improve the RBF networks such that it doesn’t conduct solely exact interpolation,
the following points could be taken into account:

1. The number m of basis functions (hidden units) should be less than n.

2. The centers of the basis functions do not need to be defined as the training data input
vectors. They can instead be determined by a training algorithm.

3. The basis functions need not all have the same width parameter σ. These can also be
determined by a training algorithm.

4. We can introduce bias parameters into the linear sum of activations at the output layer.
These will compensate for the difference between the average value over the data set
of the basis function activations and the corresponding average value of the targets.

The most general approach to overcome overfitting is to assume that the centers and the
width of the Gaussian functions are unknown, and apply a supervised learning algorithm
to solve for all the variables. This approach also includes a regularization term that thus
form the so called regularization network. The latter idea lies behind the fact that if we
add a regularization term for the network being the gradient of the function intended in
approximation, will form a network that does not rely only on interpolation, rather on both
interpolation and smoothing as follows:

Enew = Enormal + λEreg

Enew =
1

2

n∑
i=1

(yi −
m∑
j=1

ajfj(x ))

2

+
1

2
λ||∇F ||2 (8.12)

This approach will not be discussed here, rather a clustering algorithm to choose the centers
is represented.
As mentioned above, that the correct choice of the centers affects critically the performance
of the network and the function thus approximated. For that sake the correct choice of the
centers for the radial basis functions being approximated is critical. The upcoming section
will clarify a specific clustering algorithm for the choice of the centers and the widths.
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8.2.3.2 Autonomous determination of center

The choice of the centers of the radial basis functions could be done using a K-means Clus-
tering, and could be described as follows:

� The algorithm partitions data points into K disjoint subsets (K is predefined).

� The clustering criteria are:

– the cluster centers are set in the high density regions of data

– a data point is assigned to the cluster with which it has the minimum distance to
the center

Mathematically this is equivalent to minimizing the sum of square clustering function defined
as :

E =
k∑
j=1

∑
n∈Sj

||xn − cj||2

cj =
1

Nj

∑
n∈Sj

xn (8.13)

Where Sj is the j’th cluster with Nj points.
After achieving the centers, now the values of the σ could be set according to the diameters
of the clusters previously attained. For further information about the K-means clustering
please refer to [?].
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8.3 Clustering

If we search in a search engine for the term “mars”, we will get results like “the planet
mars” and “Chocolate, confectionery and beverage conglomerate” which are semantically
quite different. In the set of discovered documents there are two noticeably different clusters.
Google, for example, still lists the results in an unstructured way. It would be better if the
search engine separated the clusters and presented them to the user accordingly because the
user is usually interested in only one of the clusters.
The distinction of clustering in contrast to supervised learning is that the training data are
unlabeled. Thus the pre-structuring of the data by the supervisor is missing. Rather, finding
structures is the whole point of clustering. In the space of training data, accumulations of
of data such as those in Figure 8.5 are to be found. In a cluster, the distance of neighboring
points is typically smaller than the distance between points of different clusters. Therefore
the choice of a suitable distance metric for points, that is, for objects to be grouped and for
clusters, is of fundamental importance. As before, we assume in the following that every
data object is described by a vector of numerical attributes.

Figure 8.5: Simple two-dimensional example with four clearly separated clusters.

8.3.1 Distance Metrics

Accordingly for each application, the various distance metrics are defined for the distance d
between two vectors x and y in Rn The most common is the euclidean distance

de(x ,y) =

√√√√ n∑
i=1

(xi − yi)2.

Somewhat simpler is the sum of squared distances

dq(x ,y) =
n∑
i=1

(xi − yi)2,

which, for algorithms in which only distances are compared, is equaivalent to the euclidean
distance. Also used are the aforementioned Manhattan distance

dm(x ,y) =
n∑
i=1

|xi − yi|



8.3 Clustering 189

as well as the distance of the maximum component

d∞(x ,y) = max
i=1,...,n

|xi − yi|

which is based on the maximum norm. During text classification, the normalized projection
of the two vectors on each other, that is, the normalized scalar product

x y

|x | |y |
is frequently calculated, where |x | is the euclidian norm of x . Because this formula is a
metric for the similarity of the two vectors, as a distance metric the inverse

ds(x ,y) =
|x | |y |
x y

can be used, or “>” and “<” can be swapped for all comparisons. In the search for a text, the
attributes x1, . . . , xn are calculated similarly to naive Bayes as components of the vector x
as follows. For a dictionary with 50,000 words, the value xi equals the frequency of the i-th
dictionary word in the text. Since normally almost all components are zero in such a vector,
during the calculation of the scalar product, nearly all terms of the summation are zero. By
exploiting this kind of information, the implementation can be sped up significantly.

8.3.2 k-Means and the EM Algorithm

Whenever the number of clusters is already known in advance, the k-Means algorithm can
be used. As its name suggests, k clusters are defined by their average value. First the k
cluster midpoints µ1, . . . ,µk are randomly or manually initialized. Then the following two
steps are repeatedly carried out:

• Classification of all data to its nearest cluster midpoint

• Recomputation of the cluster midpoint.

The following scheme results as an algorithm:

k-means(x 1, . . . ,xn, k)
initialize µ1, . . . ,µk (e.g. randomly)
Repeat

classify x 1, . . . ,xn to each’s nearest µi
recalculate µ1, . . . ,µk

Until no change in µ1, . . . ,µk
Return(µ1, . . . ,µk)

The calculation of the cluster midpoint µ for points x 1, . . . ,x l is done by

µ =
1

l

l∑
i=1

x i.
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The execution on an example is shown in Figure 8.6 for the case of two classes. We see how
after three iterations, the class centers, which were first randomly chosen, stabilize. While
this algorithm does not guarantee convergence, it usually converges very quickly. This means
that the number of iteration steps is typically much smaller than the number of data points.
Its complexity is O(ndkt), where n is the total number of points, d the dimensionality of the
feature space, and t the number of iteration steps.

random initialization t = 1 t = 2 t = 3

Figure 8.6: k-means with two classes (k = 2) applied to 30 data points. Far left is the data set
with the initial centers, and to the right is the cluster after each iteration. After three iterations
convergence is reached.

In many cases, the necessity of giving the number of classes in advance poses an inconvenient
limitation. Therefore we will next introduce an algorithm which is more flexible.
Before that, however, we will mention the EM algorithm, which is a continuous variant of
k-means, for it does not make a firm assignment of the data to classes, rather, for each point
it returns the probability of it belonging to the various classes. Here we must assume that
the type of probability distribution is known. Often the normal distribution is used. The
task of the EM algorithm is to determine the parameters (mean µi and covariance matrices
Σi of the k multidimentional normal distributions) for each cluster. Similarly to k-means,
the two following steps are repeatedly executed:

Expectation: For each data point the probability P (Cj|x i) that it belongs to each cluster
is calculated.

Maximization: Using the newly calculated probabilities, the parameters of the distribution
are recalculated.

Thereby a softer clustering is achieved, which in many cases leads to better results. This
alternation between expectation and maximization gives the algorithm its name. In addition
to clustering, for example, the EM algorithm is used to learn Bayesian networks. [?].

8.3.3 Hierarchical Clustering

In hierarchical clustering we begin with n clusters consisting of one point each. Then the
nearest neighbor clusters are combined until all points have been combined into a single
cluster, or until a termination criterion has been reached. We obtain the scheme
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HierarchicalClustering(x 1, . . . ,xn)
initialize C1 = {x 1}, . . . , Cn = {xn}
Repeat

Find two clusters Ci and Cj with the smallest distance
Combine Ci and Cj

Until Termination condition reached
Return(tree with clusters)

The termination condition could be chosen as, for example, a desired number of clusters or a
maximum distance between clusters. In Figure 8.7 this algorithm is represented schematically
as a binary tree, in which from bottom to top in each step, that is, at each level, two subtrees
are connected. At the top level all points are unified into one large cluster.

0

1

2

3

4

5

6

7

8

9

10

11

le
v
e
l

c
lu

s
te

r 
d
is

ta
n
c
e

Figure 8.7: In hierarchical clustering, the two clusters with the smallest distance are combined in
each step.

It is so far unclear how the distances between the clusters are calculated. Indeed, in the
previous section we defined various distance metrics for points, but these cannot be used on
clusters. A convenient and often used metric is the distance between the two closest points
in the two clusters Ci und Cj:

dmin(Ci, Cj) = min
x∈Ci, y∈Cj

d(x ,y).

Thus we obtain the nearest neighbor algorithm, whose application is shown in Figure 8.8.
We see that this algorithm generates a minimum spanning tree.1 The example furthermore
shows that the two described algorithms generate quite different clusters. This tells us that
for graphs with clusters which are not clearly separated, the result depends heavily on the
algorithm or the chosen distance metric.
For an efficient implementation of this algorithm, we first create an adjacency matrix in
which the distances between all points is saved, which requires O(n2) time and memory. If
the number of clusters does not have an upper limit, the loop will iterate n − 1 times and
the asymptotic computation time becomes O(n3).
To calculate the distance between two clusters, we can also use the distance between the two
farthest points

dmax(Ci, Cj) = max
x∈Ci,y∈Cj

d(x ,y).

1A minimum spanning tree is an acyclic, undirected graph with the minimum sum of edge lengths.
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dmin ≥ 1.2 dmin ≥ 1.6 dmin ≥ 2 min. spanning tree

Figure 8.8: The nearest neighbor algorithm applied to the data from Figure 8.6 at different
levels with 12, 6, 3, 1 clusters.

and obtain the farthest neighbor algorithm. Alternatively, the distance of the cluster’s
midpoint dµ(Ci, Cj) = d(µi ,µj ) is used. Besides the clustering algorithm presented here,
there are many others, for which we direct the reader to [?] for further study.

8.4 Singular Value Decomposition and the Pseudo-Inverse

In Theorem 6.8 we have seen that for the computation of the pseudoinverse of an overde-
termined matrix M the square matrix M TM must be invertible. Analogously, due to
Equation 6.25, for an underdetermined matrix M the square matrix M M T has to be in-
vertible. In both cases, the resulting square matrix is invertible if the matrix M has full
rank.
We will now present an even more general method for determining a pseudoinverse even if
M has not full rank.

Reminder: Linear Algebra
Recommended preparation: Gilbert Strang Video Lectures

• Lecture 21: Eigenvalues and eigenvectors

• Lecture 25: Symmetric matrices and positive definiteness

on http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010

Definition 8.1 Two vectors x i,x j are called orthonormal if

x T
i x j = δij =

{
1 if i = j
0 else

.

A matrix A is called orthogonal, if its columns are orthonormal.

Some basic facts:

• For any orthogonal matrix A we have ATA = I.

http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010
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• No eigenvalues of an invertible n× n matrix are zero.

• If all eigenvalues of an n × n matrix are pairwise different, then the eigenvectors are
linearly independent.

• A symmetric matrix has only real eigenvalues.

• The eigenvectors of a symmetric matrix are orthogonal. They can be chosen to be
orthonormal.

Diagonalization of symmetric matrices
Eigenvalue equations:

Ax 1 = λ1x 1 . . . Axn = λnxn

Combing all n equations yields

A (x 1, . . . ,xn) = (λ1x 1, . . . , λnxn) = (x 1, . . . ,xn)

 λ1 0
. . .

0 λn



With Q = (x 1, . . .xn) and Λ =

 λ1 0
. . .

0 λn

 we get

AQ = QΛ and A = QΛQT .

Theorem 8.1 (Spectral theorem)

• Every symmetric matrix A ∈ Rn×n has the factorization A = QΛQT .

• The columns of Q are the eigenvectors.

• The eigenvectors are orthogonal.

• Λ is diagonal with the eigenvalues as elements.

Singular Value Decomposition
Gilbert Strang writes in [1]:

“I give you my opinion directly. The SVD is the climax of this linear algebra
course. I think of it as the final step in the Fundamental Theorem. First come
the dimensions of the four subspaces. Then their orthogonality. Then the or-
thonormal bases which diagonalize A. It is all in the formula M = UΣV T . You
have made it to the top.”

• M ∈ Rm×n hat not full rank.

• M TM is symmetric, but not invertible.
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Eigenvalue equation: M TM v i = σ2
i v i

vTi M TM v i = ||M v i||2 = σ2
i v

T
i v i = σ2

i ≥ 0.

Thus M TM is positive definite and ||M v i|| = σi ≥ 0. Now

M M TM v i = σ2
i M v i

shows that M M T has the same eigenvalues σ2
i with the unit eigenvectors

u i = M v i/σi.

This leads to (r = rank of M ) M v 1 = σ1u1 . . . M v r = σrur

and

M

(
v 1 . . . v r

)
=

(
u1 . . .ur

) σ1 0
. . .

0 σr

 .

Adding orthonormal vectors v i from the nullspace of M and orthonormal vectors u i from
the nullspace of M T :

M

(
v 1 . . . v r . . . vn

)
=

(
u1 . . .ur . . .um

)
σ1 0 . . . 0

. . .
σr

0
...

...
. . .

0 0 . . . 0

 .

The dimensions of these matrices are

(m× n) (n× n) = (m×m)(m× n).

Written im matrix notation, we get M V = U Σ with the orthogonal matrices V and U
and

M = U ΣV T = u1σ1v
T
1 + . . .+ urσrv

T
r .

The pseudoinverse of M now can easily be computed by

M + = V Σ+U T = v 1
1

σ1

uT
1 + . . .+ v r

1

σr
uT
r . (8.14)

with the n×m matrix

Σ+ =



1/σ1 0
. . .

1/σr
0

. . .
0 . . . 0
...

...
0 . . . 0


.
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Summary
The simplest way to compute the SVD is

� U ∈ Rm×m: Eigenvector matrix of M M T .

� Σ ∈ Rm×n being the positive square roots of the eigenvalues of either M M T or M TM .

� V ∈ Rn×n: Eigenvector matrix of M TM .

� Substitute U , V and Σ in equation 8.14 to get M + .

Regularized Version of SVD

• after applying SVD we get M + = V Σ+U T .

• To solve M · a = y for a we approximate â = M +y

With regularization term:
choose a parameter γ > 0 and solve

â = (γI + M +M )−1M +y

Example

Find the SVD decomposition of the matrix M =

(
3 2 2
2 3 −2

)
.

M M T =

(
3 2 2
2 3 −2

)
·
 3 2

2 3
2 −2

 =

(
17 8
8 17

)
(8.15)

The characteristic polynomial is the determinant |M M T − λI|. Thus we first have to
calculate M M T − λI,

M M T − λI =

(
17− λ 8

8 17− λ
)

(8.16)

The determinant is

|M M T − λI| = λ2 − 34λ+ 225 = (λ− 25)(λ− 9) (8.17)

The eigenvalues of MMT are σ2
1 = 25 and σ2

2 = 9. This means in Σ we have σ1 =
√

25 = 5
and σ2 =

√
9 = 3. To obtain the eigenvector of M M T for σ2

1 = 25 solve (M M T−λI)u1 = 0,

(M M T − λ1I)u1 =

( −8 8
8 −8

)
u1 = 0 (8.18)

An obvious eigenvector of the previous matrix is (1 1)T . Normalizing this vector we attain
u1 = ( 1√

2
1√
2
)T . For the second eigenvalue σ2

2 = 9, we proceed in the same way and we

will find that u2 = ( 1√
2
− 1√

2
)T , is the second eigenvector of M M T . Till now we have

found the matrix U and Σ in equation ??. To solve for V use M TM . The eigenvalues of
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M TM are 25, 9 and 0, and since M TM is symmetric we know that the eigenvectors will
be orthogonal.
For λ = 25, we have

M TM − 25I =

 −12 12 2
12 −12 −2
2 −2 −17

 (8.19)

which row-reduces to

 1 −1 0
0 0 1
0 0 0

.

An eigenvector is v1 = ( 1√
2

1√
2

0)T .
For λ = 9, we have

M TM − 9I =

 4 12 2
12 4 −2
2 −2 −1

 (8.20)

which row reduces to

 1 0 −1
4

0 1 1
4

0 0 0

. An eigenvector is v2 = ( 1√
18
− 1√

18
4√
18

)T .

For the last eigenvector λ3 = 0, we could find a unit vector perpendicular to v1 and v2 or
solve (M TM − λ3I)v3 = 0, then we deduce that v3 = (2

3
− 2

3
−1
3

)T . So the full SVD of our
matrix M could now be written as,

M = UΣV T =

(
1√
2

1√
2

1√
2
− 1√

2

)(
5 0 0
0 3 0

) 1√
2

1√
2

0
1√
18
− 1√

18
4√
18

2
3

−2
3
−1

3


The pseudoinverse of M is

M + = V Σ+UT =


1√
2

1√
18

2
3

1√
2
− 1√

18
−2
2

0 4√
18

−1
3


 1

5
0

0 1
3

0 0

( 1√
2

1√
2

1√
2
− 1√

2

)

Linear Regression

• Linear Regression: Estimate Parameters for

f(x ) = a1f1(x ) + · · ·+ akfk(x ) = aT f (x )

• Constraints: f(x i) = aT f (x i) = yi

• M · a = y with M ij = fj(x i).

• Overdetermined! No Solution

• Minimize E = ||M a − y ||2
• Error E on data must become a Minimum: ∇aE = 0

• Solution â = (M TM )−1M Ty
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Nonlinear Regression

• Error E on data must become a Minimum: ∇aE = 0

• ∇aE = 0 is nonlinear!

• Solution: Gradient descent!

• Adjust a in the direction of steepest descent!

-4 -2 0 2 4

-4

-2

0

2

4

8.5 Exercises

Exercise 8.1 Given M ,

M =

(
8 2 2
2 4 1

)
a) Perform the SVD decomposition and write M in the form M = UΣV T .

b) Compute the pseudoinverse M+ of M .

c) Show that M+ is a valid (Moore-Penrose) pseudoinverse.

d) Show that the pseudoinverse of M , using the technique of the underdertemined system
mentioned in section 6.3.8, is the same as the one computed by SVD.

Exercise 8.2 Given the following Matrix M ,

M =

 3 6
2 4
2 4


a) Show that the pseudoinverse of the matrix M , using the technique of the overdetermined

system mentioned in section 6.3.7, is not applicable.

b) Perform the SVD decomposition and write M in the form M = UΣV T .

c) Compute the pseudoinverse M+ of M .

d) Show that M+ is a valid pseudoinverse.

Exercise 8.3 Prove:
a) M + = V Σ+U T is a Moore-Penrose-Pseudoinverse of M .

b) Σ+ is the pseudoinverse of Σ , i.e. that Σ+ = (ΣTΣ )−1ΣT .

Exercise 8.4 Repeat your function approximation experiments from exercise ?? using SVD.
Report about your results.



Chapter 9

Numerical Integration and Solution of
Ordinary Differential Equations

9.1 Numerical Integration

Numerical integration is very important in applications, but the analytical (symbolic) inte-
gration is always preferable, if possible.

The Trapezoidal Rule

0 i ni−11

h

...                                     ...a=x x x     = bxx

y

x

Equidistant partition of [a, b] by x0 = a, x1 = a+ h, x2 = a+ 2h, ..., xn = a+ nh = b

Step size: h =
(b− a)

n

Approximation :

xi∫
xi−1

f(x) dx ≈Area of a trapezoid =h · f(xi−1)+f(xi)
2

Theorem 9.1 (Trapezoidal Rule) Let f : [a, b]→ R twice continuously differentiable . Then
it holds

b∫
a

f(x) dx = h · (f(x0)

2
+ f(x1) + ...+ f(xn−1) +

f(xn)

2

)︸ ︷︷ ︸
T (h)

−∆T (h)

with |∆T (h)| ≤ (b− a)h2

12
max
x∈[a,b]

{|f ′′(x)|}
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Proof: From Theorem 6.2 we know that the approximation error for polynomial interpo-
lation of the function f on the n+ 1 points x0, . . . , xn by a polynomial p of degree n is given
by

f(x)− p(x) =
f (n+1)(z)

(n+ 1)!
(x− x0)(x− x1) · · · (x− xn)

for a point z ∈ [a, b]. For linear interpolation of f with two points xi−1, xi this yields

f(x) = p(x) +
f ′′(zi)

2
(x− xi−1)(x− xi)

for zi ∈ [xi−1, xi].Applying this to the error of the trapezoidal rule on one sub-interval
[xi−1, xi] only we get:

εi = ∆T (h) = T (h)−
xi∫

xi−1

f(x) dx = T (h)−
xi∫

xi−1

p(x) dx−
xi∫

xi−1

f ′′(zi)

2
(x− xi−1)(x− xi) dx

= −f
′′(zi)

2

xi∫
xi−1

(x− xi−1)(x− xi) dx.

Substituting x = xi−1 + ht we evaluate

xi∫
xi−1

(x− xi−1)(x− xi) dx = h3

1∫
0

t(t− 1) dt = −h
3

6

and get

εi =
f ′′(zi)h

3

12
.

For the trapezoidal rule on the whole interval [a, b] we get

|∆T (h)| =
∣∣∣∣∣
n∑
i=1

εi

∣∣∣∣∣ ≤
n∑
i=1

|εi| =
n∑
i=1

|f ′′(zi)|h3

12
≤

n∑
i=1

h3

12
max
x∈[a,b]

{|f ′′(x)|}

=
nh3

12
max
x∈[a,b]

{|f ′′(x)|} =
(b− a)h2

12
max
x∈[a,b]

{|f ′′(x)|}

and the proof is complete. �

Richardson Extrapolation

Note: Halving of h (2h → h) doubles the computational effort (2n function evaluations).
The error is reduced by factor 4: ∆T (2h) ≈ 4∆T (h)
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x
ba

n=2

n=4

y

2h

h

T (h) ≈
∫ b

a

f(x)dx+ ch2 =

∫ b

a

f(x)dx+ ∆T (h)

T (2h) ≈
∫ b

a

f(x)dx+ 4ch2 =

∫ b

a

f(x)dx+ 4∆T (h)

T (2h)− T (h) ≈ 3∆T (h) ⇒ ∆T (h) ≈ 1

3
(T (2h)− T (h))

⇒
∫ b

a

f(x)dx = T (h)−∆T (h) ≈ T (h)−
[

1

3
(T (2h)− T (h))

]
∫ b

a

f(x)dx ≈ 4

3
T (h)− 1

3
T (2h)

This formula gives a better approximation than T(h) and is called Richardson Extrapola-
tion.

Repeated Richardson Extrapolation
We can generalize the Richardson Extrapolation to any calculation where we know the
asymptotic behaviour of some function F to be calculated for h→ 0 as

F (h) = a0 + a1h
p +O(hr),

where a0 = F (0) is the desired value, a1 is unknown and p < r. Suppose we know F for h
and qh:

F (h) = a0 + a1h
p +O(hr),

F (qh) = a0 + a1(qh)p +O(hr),

Solving for a0 yields

F (0) = a0 = F (h) +
F (h)− F (qh)

qp − 1
+O(hr)

This formula leads to a reduction of the error from O(hp) to O(hr).
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Theorem 9.2 If we know the complete expansion of F as

F (h) = a0 + a1h
p1 + a2h

p2 + a3h
p3 + . . . ,

we recursively compute

F1(h) = F (h) and Fk+1(h) = Fk(h) +
Fk(h)− Fk(qh)

qpk − 1

Then Fn(h) = a0 + a
(n)
n hpn + a

(n)
n+1h

pn+1 + . . ..

An inductive proof can be found e.g. in [27].

The Rhomberg Method
It can be shown [27] that for the trapezoidal rule we have

T (h) =

∫ b

a

f(x)dx+ a1h
2 + a2h

4 + a3h
6 + . . .

We apply repeated Richardson extrapolation with q = 2:

T1(h) = T (h)

Tk+1(h) = Tk(h) +
∆k

22k − 1
with ∆k = Tk(h)− Tk(2h)

Example 9.1 We want to approximate∫ 0.8

0

sinx

x
dx

and get

h T1(h) ∆1/3 T2(h) ∆2/15 T3(h) ∆3/63 T4(h)
0.8 0.758678

0.003360
0.4 0.768757 0.77211714

0.000835 −0.00000133
0.2 0.771262 0.77209711 0.772095771

0.000208 −0.00000008 2.26 · 10−10

0.1 0.771887 0.77209587 0.7720957853 0.772095785485

The exact solution is
∫ 0.8

0
sinx
x
dx ≈ 0.7720957854820. We see that T4(0.1) is a much better

approximation than T1(0.1).

Alternative Methods
We briefly sketch two alternative methods for approximating definite integrals. They are
examples of the so called Monte-Carlo methods (they work with random numbers).
For many complex applications e.g. the modeling by Differential Equations is either not
possible or too computationally intensive. A solution is the direct simulation of each process
using a stochastic model. Such models are used in the areas
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� Static Shysics (Many Particle Physics)

� Hydrodynamics

� Meteorology

� Road Traffic

� Waiting Queue Systems

We give two simple examples of randomized methods for approximating integrals.

Method 1
Calculating the area under a curve (see Figure 9.1)[1ex]

x
a b

f(x)

cannon

H

B

*

y

Figure 9.1: Area calculation using the Monte Carlo Method.

∫ b

a

f(x)dx ≈ Number of hits under the curve

Number of hits inside the rectangle
·B ·H

Method 2
Following the mean value theorem of integration it holds∫ b

a

f(x) dx = (b− a) ·M, (9.1)

where M is the mean of f in the interval [a, b]. Now, we discretize the interval with the given
points x1, . . . , xn and calculate the mean of f on the given points according to

A =
1

n

n∑
i=1

f(xi).

Due to the definition of the Riemann integral, only for fine discretization A ≈ M holds.
Therewith M of (9.1) can be replaced by A yielding∫ b

a

f(x) dx =
b− a
n

n∑
i=1

f(xi).

The given points xi should be chosen randomly. (why?)
For one-dimensional integrals both presented methods are clearly inferior to the trapezoidal
rule. However, in higher dimensions, the advantages show up in the form of much shorter
computing times.
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9.2 Numerical Differentiation

First Derivative

• Goal: compute numerically f ′(a) at some point x = a

• Idea: approximate the derivative by a finite difference quotient (see Figure 9.2):

x

f(x)
y

symmetric interval

asymmetric interval
f’(a)

aa−h a+h

Figure 9.2: Central Difference.

f ′(x) = lim
h→0
h6=0

f(x+ h)− f(x)

h
≈ f(x+ h)− f(x)

h

First Derivative: Approximation Error

• How does the approximation error depend on h?

Taylor Expansion of f in x0 = a:

f(a+ h) = f(a) + f ′(a)h+
1

2!
f ′′(a)h2 +

1

3!
f ′′′(a)h3 + . . .

Division by h gives

f(a+ h)− f(a)

h
= f ′(a) +

1

2!
f ′′(a)h+

1

3!
f ′′′(a)h2 + . . . = f ′(a) +O(h)

thus proving

Theorem 9.3 Let f : R → R two times continuously differentiable. Then the error of the
asymmetric difference decreases linearly with h, i.e.

f(a+ h)− f(a)

h
= f ′(a) +O(h).
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Central difference

f ′(x) = lim
h→0
h6=0

f(x+ h)− f(x− h)

2h
≈ f(x+ h)− f(x− h)

2h

• Is the central difference asymptotically better?

Taylor Expansion of f in x0 = a:

f(a+ h) = f(a) + f ′(a)h+
1

2!
f ′′(a)h2 +

1

3!
f ′′′(a)h3 + . . . (9.2)

f(a− h) = f(a)− f ′(a)h+
1

2!
f ′′(a)h2 − 1

3!
f ′′′(a)h3 + . . . (9.3)

Subtracting (9.3) from (9.2) and dividing by 2h leads to

f(a+ h)− f(a− h)

2h
= f ′(a) +

1

3!
f ′′′(a)h2 +

1

5!
f (5)(a)h4 +

1

7!
f (7)(a)h6 + . . .

= f ′(a) +O(h2)

thus proving

Theorem 9.4 Let f : R→ R three times continuously differentiable. Then the error of the
symmetric difference decreases quadratically with h, i.e.

f(a+ h)− f(a− h)

2h
= f ′(a) +O(h2).

Example 9.2 We compute the central difference with repeated Richardson Extrapolation
on the function f(x) = 1/x in x = 1 with h = 0.8, 0.4, 0.2, 0.1, 0.05, 0.025:

h F1(h) F2(h) F3(h) F4(h) F5(h) F6(h)
0.8 -2.777778
0.4 -1.190476 -0.661376
0.2 -1.041667 -0.992063 -1.01410935
0.1 -1.010101 -0.999579 -1.00008017 -0.999857481
0.05 -1.002506 -0.999975 -1.00000105 -0.999999799 -1.00000036
0.025 -1.000625 -0.999998 -1.000000016 -0.99999999934 -1.0000000001 -0.9999999998

∆1/3 ∆2/15 ∆3/63 ∆4/255 ∆5/1023
0.529101
0.049603 -0.0220459
0.010522 -0.0005010 0.000222685
0.002532 -0.0000264 0.000001256 -0.0000005581
0.000627 -0.0000016 0.000000016 -0.0000000008 0.0000000003
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Second Derivative

f ′′(x) = lim
h→0

f ′(x+ h
2
)− f ′(x− h

2
)

h
= lim

h→0

f(x+ h)− f(x)− f(x) + f(x− h)

h2

≈ f(x+ h)− 2f(x) + f(x− h)

h2

The approximation error can easily be shown to decrease quadratically with h by adding
(9.3) to (9.2):

f(a+ h)− 2f(a) + f(a− h)

h2
= +

2

2!
f ′′(a) +

2

4!
f (4)(a)h2 +

2

6!
f (6)(a)h4 + . . .

It can be shown ([27], chapter 7), that, if we (recursively) use symmetric formulas for higher
derivatives, the approxiamtion error contains only even powers of h. As a consequence, the
same Richardson extrapolation scheme can be applied.

9.3 Numerical Solution of Ordinary Differential Equa-

tions

We will use the common shorthand ODE for ordinary differential equation.

Initial Value Problems for Systems of ODEs
Given a function f(x, y), we want to find a function y(x) on an interval [a, b] which is an
approximate solution of the first order ODE

dy

dx
= f(x, y) with the initial condition y(a) = c

The order of a differential equation is the degree of the highest derivative occuring in the
equation. If f is linear, then there are symbolic solutions.
Many applications can be modelled by systems of first order ODEs

dηi
dx

= φi(x, η1, . . . , ηs) (i = 1, . . . , s)

for the unknown functions η1(x), . . . , ηs(x) with the initial contitions

ηi(ai) = γi (i = 1, . . . , s)

Such a system can be written in vector form. With

y = (η1(x), . . . , ηs(x))T

c = (γ1(x), . . . , γs(x))T

f = (φ1(x), . . . , φs(x))T

the systems reads
dy

dx
= f (x,y), y(a) = c.
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Example 9.3 ODEs of higher order can be transformed into a system of first order ODEs.
For the third order ODE

d3y/dx3 = g(x, y, dy/dx, d2y/dx2)

with the initial conditions

y(0) = γ1, y′(0) = γ2, y′′(0) = γ3

we substitute
η1 = y, η2 = dy/dx, η3 = d2y/dx2

and get

dη1/dx = η2, η1(0) = γ1

dη2/dx = η3, η2(0) = γ2

dη3/dx = g(x, y, η1, η2, η3), η3(0) = γ3

Theorem 9.5 Any system of ODEs can be transformed into an equivalent system of ODEs
with derivatives of order one only.

The Euler Method
We discretize the interval [a, b] into subintervals of width h by

xi = a+ ih (i = 0, 1, . . .) and y0 = y(a) = c

and we want to compute the values y1,y2, . . . as an approximation for the exact values
y(x1), y(x2), . . .. We approximate the system of ODEs by

dy

dx
≈ yn+1 − yn

h
= f (xn,yn)

yielding the recursion

y0 = c, yn+1 = yn + hf (xn,yn), (n = 1, 2, . . .)

The approximation error of the Euler method can be estimated using the Taylor expansion

y(xn+1) = y(xn) + y ′(xn) · h+
y ′′

2!
h2 +

y ′′′

3!
h3 + . . .

The error then is

y(xn+1)− y(xn)

h
− y ′(xn) =

y ′′

2!
h+

y ′′′

3!
h2 + . . . .

One can thus apply Richardson Extrapolation with pk = k.
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Figure 9.3: Solution polygon of the Euler method..

h = 0.1 h = 0.2
xn y(xn) yn error yn error
0 1.00 1.00 0 1.00 0
0.1 1.105 1.1 0.005
0.2 1.221 1.21 0.011 1.2 0.021
0.3 1.350 1.331 0.019
0.4 1.492 1.464 0.028 1.44 0.052
0.5 1.649 1.611 0.038
0.6 1.822 1.772 0.050 1.728 0.094  1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6
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 1.9
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exp(x)

Figure 9.4: Results of the Euler method applied to the ODE y′ = y with y(0) = 1 for h = 0.1
and h = 0.2.

Runge-Kutta Methods
The error of the Euler method is due to the linear approximation of y(x) in xn as can be seen
in Figure 9.3. This can be improved by averaging over an appropriately chosen combination
of values of the function f (x,y). The simplest formula of this type, the Heun Method
uses a symmetric average of f (xn) and f (xn+1) with the consequence that (yn+1 − yn)/h is
effectively used as a symmetric approximation of dy/dx in xn + h/2:

dy

dx
≈ yn+1 − yn

h
=

1

2
(f (xn,yn) + f (xn+1,yn + hf (xn,yn)))

Solving this for yn+1 leads to the recursion scheme

k1 = hf (xn,yn)

k2 = hf (xn + h,yn + k1 )

yn+1 = yn +
1

2
(k1 + k2 )

We use the notion y(x, h) for the numeric result with step width h obtained from applying
the recursion scheme. We get a quadratic approximation error

y(x, h) = y(x) + c2 (x)h2 + c3 (x)h3 + c4 (x)h4 + . . .
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with the exponents pk = 2, 3, 4, 5, . . . for Richardson extrapolation.
An even better scheme, known as fourth order Runge Kutta or classical Runge Kutta is

k1 = hf (xn,yn)

k2 = hf (xn +
1

2
h,yn +

1

2
k1 )

k3 = hf (xn +
1

2
h,yn +

1

2
k2 )

k4 = hf (xn + h,yn + k3 )

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4 )

with the approximation error

y(x, h) = y(x) + c4 (x)h4 + c3 (x)h5 + . . .

and pk = 4, 5, 6, . . .
Figure 9.5 shows a comparison between the three yet presented methods for solving first order
initial value problems. It clearly confirms the theoretical results wrt. the approximation error
which are:
Euler method: O(h), Heun method: O(h2), Runge Kutta O(h4)

Euler method Heun method Runge Kutta
xn y(xn) yn error yn error yn error
0 1.00 1.00 0 1.00 0 1.00 0
0.1 1.10517 1.1 0.005 1.105 0.00017 1.10517 8.5 · 10−8

0.2 1.22140 1.21 0.011 1.22103 0.00038 1.22140 1.9 · 10−7

0.3 1.34986 1.33 0.019 1.34923 0.00063 1.34986 3.1 · 10−7

0.4 1.49182 1.46 0.028 1.4909 0.00092 1.49182 4.6 · 10−7

0.5 1.64872 1.61 0.038 1.64745 0.00127 1.64872 6.3 · 10−7

0.6 1.82212 1.77 0.051 1.82043 0.00169 1.82212 8.4 · 10−7

Figure 9.5: Comparison of Euler method, Heun method and Runge Kutta applied to the
ODE y′ = y with y(0) = 1 and h = 0.1.

Often the selection of an appropriately small step size h is critical for good results of all
described methods. This can be automatized with methods that adapt the step size (see
[12]).

Example 9.4 We want to solve a classical predator prey system from biology. y1(t) may
be a population of sheep and y2(t) a population of wolves. With no wolves the sheeps breed
nicely. Breeding of the wolves increases monotonically with the number of wolves and sheep.
But with no sheep, wolves will die out. The ODEs from Lotka-Volterra are [12]:

ẏ1(t) = αy1(t)(1− y2(t))

ẏ2(t) = y2(t)(y1(t)− 1)

With the Runge Kutta method we can easily compute the population dynamics for this
system. A sample plot is shown in Figure 9.6.
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Figure 9.6: Population dynamics for α = 10, t = 0, . . . , 5 h = 0.05.

Boundary Value Problems for Second Order ODEs
As already mentioned in example 9.3, whenever a second order ODE can be written as

y′′ = f(x, y, y′),

it can be transformed into a system of two first order ODEs and then be solved with the
methods already described. We will now sketch ideas for a direct solution of scalar second
order boundary value problems of the form

y′′ = f(x, y, y′) with the boundary conditions y(a) = α, y(b) = β.

We discretize the derivatives by

y′(xn) ≈ yn+1 − yn−1

2h
and y′′(xn) ≈ yn+1 − 2yn + yn−1

h2

on the interval [a, b] with b− a = mh and xi = a+ ih. yi is the approximation of y(xi). We
obtain the (typically nonlinear) system of equations

y0 = α

yn+1 − 2yn + yn−1 = h2f(xn, yn,
yn+1 − yn−1

2h
), (n = 1, 2, 3, . . .m− 1)

ym = β.

With f = (f1, . . . , fm−1)T and

fn = f(xn, yn,
yn+1 − yn−1

2h
)

we can write the system in matrix form

Ay = h2f (y)− r (9.4)
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with

A =



−2 1 0 0 · · · 0
1−2 1 0 · · · 0
0 1 −2 1 · · · 0
...

. . . . . . . . .
...

0 0 · · · 1 −2 1
0 0 · · · 0 1−2


, y =



y1

y2

y3
...
...

ym−1


, f (y) =



f1

f2

f3
...
...

fm−1


, r =



α
0
0
...
0
β


.

If the differential equation is linear, this is a linear system that can be solved in linear
time with the tridiagonal algorithm described in Section 6.2.2. Since we used symmetric
approximation formulas for the derivatives, the approximation error is

y(x, h) = y(x) + c1 (x)h2 + c2 (x)h4 + c3 (x)h6 + . . .

In the nonlinear case one can use the iterative approach

Ayk+1 = h2f (yk )− r (9.5)

where yk stands for the value of y after k iterations. As initial values one can use a linear
interpolation between the two boundary values y0 = y(0) = α, ym = y(b) = β:

y0
i = α + (β − α)

i

m
.

Multiplication of Equation 9.5 with A−1 gives

yk+1 = h2A−1f (yk )−A−1r

This is a fixed point iteration
yk+1 = F (yk )

for solving the fixed point equation
y = F (y) (9.6)

with
F (y) = h2A−1f (y)−A−1r .

A generalization of the Banach fixed point theorem from Section 5.3.2 can be applied here if
F is a contraction. This means, if for any vectors x ,y there is a nonnegative real number
L < 1 with

‖F (x )− F (y)‖ ≤ L‖x − y‖,
the iteration converges to the unique solution of Equation 9.6 (or equivalently Equation 9.4).

The Cart-Pole-Problem
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(M +m) ẍ−mlθ̈ cos θ +mlθ̇2 sin θ = 0

ml(−g sin θ − ẍ cos θ + lθ̈) = 0

9.4 Linear Differential Equations with Constant Coef-

ficients

To solve the one dimensional first order ODE1

dy

dx
= λy with the initial value y(0)

we try
y(x) = aeλx

and get

y(x) = y(0)eλx

Systems of Linear Differential Equations with Constant Coefficients
To solve

dy

dx
= Ay with the initial value y(0) (9.7)

we try
y(x) = ueλx

Substitution leads to the Eigenvalue problem Au = λu

1We follow section 6.3 in [1]
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Example
To solve

dy

dx
=

(
1 2
2 1

)
y with y(0) =

(
5
4

)
(9.8)

we have to solve Au = λu and get the characteristic equation

(1− λ)(1− λ)− 4 = 0

with the solutions λ1 = 3 and λ2 = −1 and the eigenvectors

u1 =

(
1
1

)
, u1 =

(
1
−1

)
.

The particular solutions are:

y1(x) = u1e
λ1x and y2(x) = u2e

λ2x

The linear combinations
y(x) = a1u1e

λ1x + a2u2e
λ2x

represent the subspace of all solutions of equation 9.7.
For x = 0 we get

y(0) = a1u1 + a2u2 = (u1u2)

(
a1

a2

)
.

For the example (equation 9.8) this gives(
1 1
1 −1

)(
a1

a2

)
=

(
5
4

)
or

a1 + a2 = 5

a1 − a2 = 4

yielding a1 = 9/2 and a2 = 1/2 and the solution to our initial value problem is

y(x) =

(
9/2
9/2

)
e3x +

(
1/2
−1/2

)
e−x

Second order Linear Linear ODEs with Constant Coefficients

Many mechanical systems can be described by the
second order linear ODE2

mẍ+ bẋ+ kx = 0 (9.9)

with

ẋ = dx
dt

= derivative wrt. time t

mẍ = resulting force on point mass m (Newton’s Law)

−bẋ = friction proportional to speed (damping)

−kx = elastic restoring force (linear spring)

2Figure from http://en.wikipedia.org/wiki/File:Mass-Spring-Damper.png

http://en.wikipedia.org/wiki/File:Mass-Spring-Damper.png
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Transformation to a system of first order ODEs

mẍ+ bẋ+ kx = 0

We substitute ẋ = v and thus ẍ = v̇ and get the first order system

ẋ = v

mv̇ + bv + kx = 0
or

ẋ = v

mv̇ = −kx− bv
In matrix form: (

ẋ
v̇

)
=

(
0 1
−α −β

)
·
(
x
v

)
(9.10)

with α = k
m

and β = b
m

.
Eigenvalue problem: ∣∣∣∣( −λ 1

−α −β − λ
)∣∣∣∣ = 0

Characteristic equation:

−λ(−β − λ) + α = λ2 + βλ+ α = 0

with the solutions

λ1,2 = −β
2
±
√
β2

4
− α.

The corresponding eigenvectors are

u1 =

(
1
λ1

)
and u2 =

(
1
λ2

)
.

The solutions for the ODE system (9.10) are(
x
v

)
= a1u1e

λ1t + a2u2e
λ2t = a1

(
1
λ1

)
eλ1t + a2

(
1
λ2

)
eλ2t

We only look at the x-component:

x(t) = a1e
λ1t + a2e

λ2t

Eigenvalues may be complex: λ = r + iω. Then

eλt = ert+iωt = ert · eiωt = ert · (cosωt+ i sinωt)

Since

|eiωt| =
√

(cos2 ωt+ sin2 ωt) = 1,

the real factor ert determines if the solution is stable.

Definition 9.1 We call a matrix A stable if all eigenvalues have negative real parts.
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The complex part cosωt+ i sinωt produces oscillations.
Solution is exponential only, if the eigenvalues are real, i.e. if

β2

4
− α > 0.

For α > 0 and β > 0 this means β > 2
√
α or b > 2

√
km.

With ξ = b
2
√
km

we get the solution diagram3

In 2-dimensional x, v-space we get the solutions
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Back to nonlinear ODEs
We consider the following system of two nonlinear ODEs:

ẏ1 = αy1 − y2 − y1(y2
1 + y2

2)

ẏ2 = y1 + αy2 − y2(y2
1 + y2

2)

3Figure from http://en.wikipedia.org/wiki/Harmonic_oscillator

http://en.wikipedia.org/wiki/Harmonic_oscillator
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Hopf Bifurcation
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Hopf Bifurcation
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216 9 Numerical Integration and Solution of Ordinary Differential Equations

Hopf Bifurcation, Properties45

• Limit cycle is a stable attractor.

• Supercritical Hopf bifurcation.

• α < 0: stable dynamics (converges to steady point).

• α ≥ 0: unstable dynamics.

• First Lyapunavo coefficient is negative.

Definition 9.2 The appearance or the disappearance of a periodic orbit through a local
change in the stability properties of a steady point is known as Hopf bifurcation.

Unstable Attractor
We slightly modify the system of ODEs:

ẏ1 = αy1 − y2+y1(y2
1 + y2

2)

ẏ2 = y1 + αy2+y2(y2
1 + y2

2)
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α = −0.2 and yT (0) = (0, 0.448).

4www.scholarpedia.org/article/Andronov-Hopf_bifurcation
5en.wikipedia.org/wiki/Hopf_bifurcation

www.scholarpedia.org/article/Andronov-Hopf_bifurcation
en.wikipedia.org/wiki/Hopf_bifurcation
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Unstable Attractor, Properties

• Limit cycle is an unstable attractor.

• Subcritical Hopf bifurcation.

• α < 0: the origin is a stable steady point.

• α ≥ 0: unstable dynamics (divergence).

• First Lyapunavo coefficient is positive.

The Lorenz Attractor6

ẋ = σ(y − x)

ẏ = x(ρ− z)− y
ż = xy − βz

• Simple model of at-
mospheric convection.

• Chaotic attractor.

The Logistic Equation
Similar chaotic dynamics as in the Lorenz attractor can be observed in the following discrete
population model:

• Reproduction proportional to qr qvXn.

• Animals die proportional to qd(C −Xn).

6en.wikipedia.org/wiki/Lorenz_attractor

en.wikipedia.org/wiki/Lorenz_attractor
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• C = capacity of the habitate.

Xn+1 = qr qvXn (C −Xn).

Simplification (C = 1):
xn+1 = r xn (1− xn).

The Logistic Equation, Values
r = 2.2000: 0.10000 0.19800 0.34935 0.50007 0.55000 0.54450 0.54564 0.54542 0.54546
0.54545 r = 3.2000: 0.10000 0.28800 0.65618 0.72195 0.64237 0.73514 0.62307 0.75153
0.59754 0.76955 0.56749 ... 0.79945 0.51305 0.79946 0.51304 0.79946 0.51304 r = 3.5000:
0.10000 0.31500 0.75521 0.64703 0.79933 0.56140 0.86181 0.41684 0.85079 0.44431 0.86414
0.41090 0.84721 ... 0.50089 0.87500 0.38282 0.82694 0.50088 0.87500 0.38282 0.82694

The Feigenbaum Diagram7

In the following bifurcation diagram we see the limit values drawn over the parameter value r:

7de.wikipedia.org/wiki/Logistische_Gleichung

de.wikipedia.org/wiki/Logistische_Gleichung
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The End

• Thank you for attending the lectures!

• Thank you for working hard on the exercises!

• I wish you fun with Mathematics, with the exercises and with ...

• I wish you all the best for the exam!!!

9.5 Exercises

9.5.1 Numerical Integration and Differentiation

Exercise 9.1 Let h = xi − xi−1. Calculate the integral
xi∫

xi−1

(x − xi−1)(x − xi) dx using the

substitution x = xi−1 + ht with the new variable t.

Exercise 9.2 Write a program for the numerical approximate computation of the integral
of a function f in the interval [a, b].

a) Write a function T for the computation of the integral with the trapezoidal rule on an
equidistant grid with n equal sub intervals.

b) Apply the function T with n and 2n sub intervals to increase the accuracy with Richardson-
extrapolation.
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c) Apply your functions to

∫ 1

0

e−x
2

dx and produce a table of the approximation error

depending on the step size h (1/20 ≤ h ≤ 1).

d) Show using the above table that the error decreases quadratically for h→ 0.

Exercise 9.3
a) Compute the area of a unit circle using both presented Monte-Carlo methods (naive and

mean of function values) to an accuracy of at least 10−3.

b) Produce for both methods a table of the deviations of the estimated value depending on
the number of trials (random number pairs) and draw this function. What can you say
about the convergence of this method?

c) Compute the volume of four dimensional unit sphere to a relative accuracy of 10−3. How
much more running time do you need?

Exercise 9.4

a) Compute the first derivative of the function cosx/x in x = 2
with the symmetric difference formula and h = 0.1.

b) Apply Richardson extrapolation to compute F4(h).

c) Compare the error of F4(h) with the theoretical estimate
given in Theorem 9.2.

d) Use the table of function values of the function f given beside
to approximate the derivative f ′(x). Apply repeated Richard-
son extrapolation to get F2(h), F3(h) and F4(h). Plot the
resulting functions.

0.5 -3.75
0.75 -1.36607
1. 0.
1.25 0.729167
1.5 1.05
1.75 1.10795
2. 1.
2.25 0.793269
2.5 0.535714
2.75 0.2625
3. 0.

9.5.2 Differential Equations

Exercise 9.5
a) Write programs that implement the Euler-, Heun- and Runge Kutta methods for solving

first order initial value problems.

b) Implement the Richardson extrapolation scheme for these methods.

Exercise 9.6 The initial value problem

dy

dx
= sin(xy) y0 = y(0) = 1

is to be solved numerically for x ∈ [0, 10].
a) Compare the Euler-, Heun- and Runge Kutta methods on this example. Use h = 0.1.

b) Apply Richardson extrapolation to improve the results in x = 5 for all methods. (atten-
tion: use the correct pk for each method.)

Exercise 9.7 Apply the Runge Kutta method to the predator-prey example 9.4 and exper-
iment with the parameter α and the initial values. Try to explain the population results
biologically.

Exercise 9.8 Use Runge Kutta to solve the initial value problem

dy

dx
= x sin(xy) y0 = y(0) = 1
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for x ∈ [0, 20]. Report about problems and possible solutions.

Exercise 9.9 The following table shows the differences between the approximations com-
puted with Richardson extrapolation for some numeric algorithm. Determine from the table
the convergence order of the algorithm for h→ 0 and all the exponents pi in the taylor expan-
sion for F (h). (Hint: These differences are an approximation of the error on the respective
approximation level,)

h
1 −0.075433
0.5 −0.018304 0.0001479
0.25 −0.004542 9.106 · 10−6 −3.492 · 10−8

0.125 −0.001133 5.670 · 10−7 −5.409 · 10−10 1.208 · 10−12

0.0625 −0.000283 3.540 · 10−8 −8.433 · 10−12 4.691 · 10−15 −6.847 · 10−18

Exercise 9.10 (challenging)

The dynamics of the inverted pendulum – also called
cart pole – system as shown beside can be described by
the following two differential equations of second order.
Here ẋ ẍ, etc. are the first and second derivatives wrt.
the time t. A derivation of these equations can be found
on Wikipedia (not required here).

(M +m) ẍ−mlθ̈ cos θ +mlθ̇2 sin θ = 0 (9.11)

ml(−g sin θ − ẍ cos θ + lθ̈) = 0 (9.12)

a) Use the substitution y1 = x, y2 = ẋ, y3 = θ, y4 = θ̇ to obtain a system of 4 first order
ODEs of the form ẏ = f (y). (hint: make sure, the right hand sides of the differential
equations contain no derivatives!)

b) Apply the Runge Kutta method to solve the system for g = 9.81, m = 1, m = 1 with
the initial condition y1(0) = 0, y2(0) = 0, y3(0) = 0.01, y4(0) = 0.

c) Plot the functions y1(t), y2(t), y3(t), y4(t) and try to understand them.

d) Experiment with other initial conditions and other masses, e.g. m = 1, M = 100000 or
M = 1, m = 100000.

Exercise 9.11 Prove that, if y1 and y2 are solutions of the ODE y ′ = λy , then any linear
combination of y1 and y2 is also a solution.

Exercise 9.12 Prove that the eigenvectors of the matrix(
0 1
−α −β

)
from equation 9.10 with the eigenvalues λ1 and λ2 are (1, λ1)T and (1, λ2)T .

Exercise 9.13
a) Solve the initial value problem mẍ+ bẋ+ kx = 0 with x(0) = 0 and ẋ(0) = −10m/s for

the parameters: m = 10kg, b = 2kg/s, k = 1kg/s2. Plot the resulting function x(t).

b) The general solution involves a complex component i sinωt. Does it make sense to have a
complex sine-wave as solution for an ODE with real coefficients and real initial conditions?
What is the natural solution for this problem?
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Exercise 9.14 Linearize the Lotka-Volterra ODEs and show that this no good model for a
predator prey system. To do this:
a) Calculate the Jacobian matrix of the right hand side of the ODEs at y(0) and set up the

linearized ODEs.

b) Calculate the eigenvalues of the Jacobian and describe the solutions of the linearized
system.

Exercise 9.15 Download the Octave/Matlab code for the Lorenz attractor from http:

//en.wikipedia.org/wiki/Lorenz_attractor. Modify the code to dynamically follow a
trajectory and observe the chaotic dynamics of the system.

http://en.wikipedia.org/wiki/Lorenz_attractor
http://en.wikipedia.org/wiki/Lorenz_attractor
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