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Preface to first edition*

This text is written for those who have studied calculus in the sixth
form at school, and are now ready to review that mathematics
rigorously and to seek precision in its formulation. The question
sequence given here tackles the key concepts and ideas one by one, and
invites a self imposed precision in each area. At the successful
conclusion of the course, a student will have a view of the calculus
which is in accord with modern standards of rigour, and a sound
springboard from which to study metric spaces and point set topology,
or multi-dimensional calculus.

Generations of students have found the study of the foundations of
the calculus an uncomfortable business. The reasons for this discomfort
are manifold.

(1) The student coming from the sixth form to university is already
familiar with Newtonian calculus and has developed confidence in
the subject by using it, and experiencing its power. Its validity has
been established for him/her by reasonable argument and confirmed
by its effectiveness. It is not a source of student uncertainty and this
means that an axiomatic and rigorous presentation seems to make
heavy weather of something which is believed to be sound, and
criticisms of Newtonian calculus seem to be an irritating piece of
intellectual nit-picking.

(2) At an age when a student’s critical capacity is at its height, an
axiomatic presentation can have a take-it-or-leave-it quality which
feels humiliating: axioms for the real numbers have none of the
‘let’s-play-a-game’ character by which some simpler systems appeal
to the widespread interest in puzzles. The bald statement of axioms
for the real numbers covers up a significant process of decision-

* The text of this preface was revised slightly for the second edition.
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making in their choice, and the Axiom of Completeness,
which lies at the heart of most of the main results in analysis, seems
superfluous at first sight, in whatever form it is expressed.

(3) Even when the axiom system has been accepted, proofs by
contradiction can be a stumbling block, either because the results
are unbelievable, as in the case of irrationality or uncountability, or
because they make heavy weather of such seemingly obvious results
as the Intermediate Value Theorem or Rolle’s Theorem.

(4) Definitions, particularly those of limits and continuity, appear
strangely contrived and counter-intuitive.

There are also discomforts of lesser moment which none the less make
the subject indigestible:

(5) the abstract definition of a function (when most students have only
used the word function to mean a formula),

(6) the persistent use of inequalities in argument to tame infinity and
infinitesimals,

(7) and proofs by induction (which play an incidental rôle in most
school courses).

(8) The student who has overcome these hurdles will find that some of
the best textbooks will present him/her with exercises at the end of
each chapter which are so substantial that it could be a term’s
work to complete even those associated with three hours of
lectures.

(9) The student who seeks help in the bibliography of his/her current
text may find that the recommended literature is mostly for ‘further
reading’.

Most of these difficulties are well-attested in the literature on
mathematical education. (See for example articles published in
Educational Studies in Mathematics throughout the 1980s or the review
article by David Tall (1992).)

With these difficulties in mind we may wonder how any students
have survived such a course! The questions which they ask analysis
lecturers may reveal their methods. Although I believed, as an
undergraduate, that I was doing my best, I remember habitually asking
questions about the details of the lecturer’s exposition and never asking
about the main ideas and results. I realise now that I was exercising
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only secretarial skills in the lecture room, and was not involved in the
overall argument. A more participatory style of learning would have
helped. Many of those who have just completed a degree in
mathematics will affirm that 0.9 recurring is not the limit of a sequence,
but an ordinary number less than 1! This is not evidence of any lack of
intelligence: through the nineteenth century the best mathematicians
stumbled because of the difficulty of imagining dense but incomplete
sets of points and the seeming unreality of continuous but
non-differentiable functions. There was real discomfort too in banning
the language of infinitesimals from the discussion of limits. In their
difficulties today, students have much in common with the best
mathematicians of the nineteenth century.

It has been said that the most serious deficiency in undergraduate
mathematics is the lack of an existence theorem for undergraduates!
Put in other words, by an eminent educationalist, ‘If I had to reduce all
of educational psychology to just one principle, I would say this: the
most important single factor influencing learning is what the learner
already knows. Ascertain this, and teach him accordingly.’ (Ausubel,
1968). There is a degree of recognition of this principle in virtually
every elementary text on analysis, when, in the exercises at the end of a
chapter, the strictly logical order of presentation is put aside and future
results anticipated in order that the student should better understand
the points at issue. The irrationality of � may be presumed before the
number itself has been defined. The trigonometric, exponential and
logarithmic functions almost invariably appear in exercises before they
have been formally or analytically defined. In this book, my first
concern, given the subject matter, has been to let students use what they
already know to generate new concepts, and to explore situations which
invite new definitions. In working through each chapter of the book the
student will come to formulate, in a manner which respects modern
standards of rigour, part of what is now the classical presentation of
analysis. The formal achievements of each chapter are listed in
summaries, but on the way there is no reluctance to use notions which
will be familiar to students from their work in the sixth form. This, after
all, is the way the subject developed historically. Sixth-form calculus
operates with the standards of rigour which were current in the middle
of the eighteenth century and it was from such a standpoint that the
modern rigorous analysis of Bolzano, Cauchy, Riemann, Weierstress,
Dedekind and Cantor grew.

So the first principle upon which this text has been constructed is
that of involving the student in the generation of new concepts by using
ideas and techniques which are already familiar. The second principle is
that generalisation is one of the least difficult of the new notions which
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a student meets in university mathematics. The judiciously chosen
special case which may be calculated or computed, provides the basis
for a student’s own formulation of a general theorem and this sequence
of development (from special case to general theorem) keeps the
student’s understanding active when the formulation of a general
theorem on its own would be opaque.

The third principle, on which the second is partly based, is that
every student will have a pocket calculator with ‘scientific’ keys, and
access to graph drawing facilities on a computer. A programmable
calculator with graphic display will possess all the required facilities.

There is a fourth principle, which could perhaps be better called an
ongoing tension for the teacher, of weighing the powerful definition and
consequent easy theorem on the one hand, against the weak definition
(which seems more meaningful) followed by the difficult theorem on the
other. Which is the better teaching strategy? There is no absolute rule
here. However I have chosen ‘every infinite decimal is convergent’ as
the axiom of completeness, and then established the convergence of
monotonic bounded sequences adapting an argument given by P. du
Bois-Reymond in 1882. Certainly to assume that monotonic bounded
sequences are convergent and to deduce the convergence of the
sequence for an infinite decimal takes less paper than the converse, but
I believe that, more often than has usually been allowed, the
combination of weaker definition and harder theorem keep the
student’s feet on the ground and his/her comprehension active.

Every mathematician knows theorems in which propositions are
proved to be equivalent but in which one implication is established
more easily than the other. A case in point is the neighbourhood
definition of continuity compared with the convergent sequence
definition. After considerable experience with both definitions it is clear
to me that the convergent sequence definition provides a more effective
teaching strategy, though it is arguable that this is only gained by
covert use of the Axiom of Choice. (A detailed comparison of different
limit definitions from the point of view of the learner is given in ch. 14
of Hauchart and Rouche.) As I said earlier, the issue is not one of
principle, but simply an acknowledgement that the neat piece of logic
which shortens a proof may make that proof and the result less
comprehensible to a beginner. More research on optimal teaching
strategies is needed.

It sometimes seems that those with pedagogical concerns are soft
on mathematics. I hope that this book will contradict this impression. If
anything, there is more insistence here than is usual that a student be
aware of which parts of the axiomatic basis of the subject are needed at
which juncture in the treatment.
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The first two chapters are intended to enable the student who needs
them to improve his/her technique and his/her confidence in two
aspects of mathematics which need to become second nature for anyone
studying university mathematics. The two areas are those of
mathematical induction and of inequalities. Ironically, perhaps, in view
of what I have written above, the majority of questions in chapter 2
develop rudimentary properties of the number system from stated
axioms. These questions happen to be the most effective learning
sequences I know for generating student skills in these areas. My debt
to Landau’s Foundations of Analysis and to Thurston’s The
Number-system will be evident. There is another skill which these
exercises will foster, namely that of distinguishing between what is
familiar and what has been proved. This is perhaps the key distinction
to be drawn in the transition from school to university mathematics,
where it is expected that everything which is to be assumed without
proof is to be overtly stated. Commonly, a first course in analysis
contains the postulational basis for most of a degree course in
mathematics (see appendix 1). This justifies lecturers being particularly
fussy about the reasoning used in proofs in analysis. In the second
chapter we also establish various classical inequalities to use in later
work on convergence.

In the third chapter we step into infinite processes and define the
convergence of sequences. It is the definition of limit which is
conventionally thought to be the greatest hurdle in starting analysis,
and we define limits first in the context of null sequences, the preferred
context in the treatments of Knopp (1928) and Burkill (1960). In order
to establish basic theorems on convergence we assume Archimedean
order. When the least upper bound postulate is used as a completeness
axiom, it is common to deduce Archimedean order from this postulate.
Unlike most properties established from a completeness axiom,
Archimedean order holds for the rational numbers, and indeed for any
subfield of the real numbers. So this proof can mislead. The distinctive
function of Archimedean order in banishing infinite numbers and
infinitesimals, whether the field is complete or not, is often missed. The
Archimedean axiom expressly forbids � being a member of the number
field. Now that non-standard analysis is a live option, clarity is needed
at this point. In any case, the notion of completeness is such a hurdle to
students that there is good reason for proving as much as possible
without it. We carry this idea through the book by studying sequences
without completeness in chapter 3 and with completeness in chapters 4
and 5; continuous functions and limits without completeness in
chapter 6 and with completeness in chapter 7; differentiation without
completeness in chapter 8 and with completeness in chapter 9.
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The fourth chapter is about the completeness of the real numbers.
We identify irrational numbers and contrast the countability of the
rationals with the uncountability of the set of infinite decimals. We
adopt as a completeness axiom the property that every infinite decimal
is convergent. We deduce that bounded monotonic sequences are
convergent, and thereafter standard results follow one by one. Of the
possible axioms for completeness, this is the only one which relates
directly to the previous experience of the students. With completeness
under our belt, we are ready to tackle the convergence of series in
chapter 5.

The remaining chapters of the book are about real functions and
start with a section which shows why the consideration of limiting
processes requires the modern definition of a function and why
formulae do not provide a sufficiently rich diet of possibilities. By
adopting Cantor’s sequential definition of continuity, a broad spectrum
of results on continuous functions follows as a straightforward
consequence of theorems about limits of sequences. The second half of
chapter 6 is devoted to reconciling the sequential definitions of
continuity and limit with Weierstrass’ neighbourhood definitions, and
deals with both one- and two-sided limits. These have been placed as
far on in the course as possible. There is a covert appeal to the Axiom
of Choice in the harder proofs. Chapter 6 builds on chapter 3, but does
not depend on completeness in any way. In chapter 7 we establish the
difficult theorems about continuity on intervals, all of which depend on
completeness. Taking advantage of the sequential definition of
continuity, we use completeness in the proofs by claiming that a
bounded sequence contains a convergent subsequence. There is again a
covert appeal to the Axiom of Choice.

Chapters 8 and 9, on differentiation, are conventional in content,
except in stressing the distinction between those properties which do
not depend on completeness, in chapter 8 (the definition of derivative
and the product, quotient and chain rules), and those which do, in
chapter 9 (Rolle’s Theorem to Taylor’s Theorem). The differentiation of
inverse functions appears out of place, in chapter 8. Chapter 10, on
integration, starts with the computation of areas in ways which were, or
could have been, used before Newton, and proceeds from these
examples of the effective use of step functions to the theory of the
Riemann integral. Completeness is used in the definition of upper and
lower integrals.

The convention of defining logarithmic, exponential and circular
functions either by neatly chosen integrals or by power series is almost
universal. This seems to me to be an excellent procedure in a second
course. But the origins of exponentials and logarithms lie in the use of
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indices and that is the starting point of our development in chapter 11.
Likewise our development of circular functions starts by investigating
the length of arc of a circle. The treatment is necessarily more lengthy
than is usual, but offers some powerful applications of the theorems of
chapters 1 to 10.

A chapter on uniform convergence completes the book. Some
courses, with good reason, postpone such material to the second year.
This chapter rounds off the problem sequence in two senses: firstly, by
the discussion of term-by-term integration and differentiation, it
completes a university-style treatment of sixth-form calculus; and
secondly by discussing the convergence of functions it is possible to see
the kind of questions which provoked the rigorous analysis of the late
nineteenth century.

The interdependence of chapters is illustrated below.

(1� ) 2� 3� 4� 5
� �
6� 7
� �
8� 9� 10� 11

�
12

�

One review of my Pathway into Number Theory (Times Higher
Educational Supplement, 3.12.82) suggested that a pathway to analysis
would be of more value than a pathway to number theory. While not
disagreeing with the reviewer, I could not, and still today cannot, see
the two tasks as comparable. The subtlety of the concepts and
definitions of undergraduate analysis is of a different order. But the
reviewer’s challenge has remained with me, and the success I have seen
students achieve with my pathways to number theory and geometrical
groups has spurred me on. None the less, I offer these steps (notice the
cautious claim by comparison with the earlier books) aware that they
contain more reversals of what I regard as an optimal teaching
sequence than the earlier pathways.

It may be helpful to clarify the differences between the present text
and other books on analysis which have the word ‘Problem’ in their
titles. I refer firstly to the books of the Schaum series. Although their
titles read Theory and problems of . . . the books consist for the most
part of solutions. Secondly, a book with the title Introductory Problem
Course in Analysis and Topology written by E. E. Moise consists of a
list of theorems cited in logical sequence. Thirdly, the book Problems
and Propositions in Analysis by G. Klambauer provides an enriching
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supplement to any analysis course, and, in my opinion, no lecturer in
the subject should be without a copy. And finally there is the doyen of
all problem books, that by Pólya and Szegö (1976), which expects
greater maturity than the present text but, again, is a book no analysis
lecturer should be without.

Sometimes authors of mathematics books claim that their
publications are ‘self-contained’. This is a coded claim which may be
helpful to an experienced lecturer, but can be misleading to an
undergraduate. It is never true that a book of university mathematics
can be understood without experience of other mathematics. And when
the concepts to be studied are counter-intuitive, or the proofs tricky, it
is not just that one presentation is better than another, but that all
presentations are problematic, and that whichever presentation a
student meets second is more likely to be understood than the one met
first. For these reasons I persistently encourage the consultation of
other treatments. While it is highly desirable to recommend a priority
course book (lest the student be entirely at the mercy of the lecturer)
the lecturer needs to use the ideas of others to stimulate and improve
his/her own teaching; and, because students are different from one
another, no one lecturer or book is likely to supply quite what the
student needs.

There is a distinction of nomenclature of books on this subject,
with North American books tending to include the word ‘calculus’ in
their titles and British books the word ‘analysis’. In the nineteenth
century the outstanding series of books by A. L. Cauchy clarified the
distinction. His first volume was about convergence and continuity and
entitled ‘Course of Analysis’ and his later volumes were on the
differential and integral calculus. The general study of convergence thus
preceded its application in the context of differentiation (where limits
are not reached) and in integration (where the limiting process occurs
by the refinement of subdivisions of an interval). British university
students have met a tool-kit approach to calculus at school and the
change in name probably assists the change in attitude required in
transferring from school to university. But the change of name is
unhelpful to the extent that it is part of the purpose of every first course
of analysis in British universities to clarify the concepts of school
calculus and to put familiar results involving differentiation and
integration on a more rigorous foundation.

I must express gratitude and indebtedness to many colleagues: to
my own teacher Dr J. C. Burkill for his pursuit of simplicity and clarity
of exposition; to Hilary Shuard my colleague at Homerton College
whose capacity to put her finger on a difficulty and keep it there would
put a terrier to shame (an unpublished text on analysis which she wrote
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holds a honoured place in my filing cabinet; time and again, when I
have found all the standard texts unhelpful, Hilary has identified the
dark place, and shown how to sweep away the cobwebs); to Alan
Beardon for discussions about the subject over many years; to Dr D. J.
H. Garling for redeeming my mistakes, and for invaluable advice on
substantial points; to Dr T. W. Körner for clarifying the relationship
between differentiability and invertibility of functions for me by
constructing a differentiable bijection Q � Q whose inverse is not
continuous; and to Dr F. Smithies for help with many historical points.
At a fairly late stage in the book’s production I received a mass of
detailed and pertinent advice from Dr Tony Gardiner of Birmingham
University which has led to many improvements. This book would not
yet be finished but for the sustained encouragement and support of
Cambridge University Press. The first book which made me believe that
a humane approach to analysis might be possible was The Calculus, a
Genetic Approach by O. Toeplitz. The historical key to the subject
which he picked up can open more doors than we have yet seen. I still
look forward to the publication of an undergraduate analysis book,
structured by the historical development of the subject during the
nineteenth century. [Added in 1995.] David Bressoud’s new book is
greatly to be welcomed, but we still await a text inspired by the history
surrounding the insights of Weierstrass, and especially the development
of the notion of completeness.

I would like to be told of any mistakes which students or lecturers
find in the book.

School of Education, R. P. Burn
Exeter University, EX1 2LU
January 1991
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Preface to second edition

Under the inspiration of David Fowler, driven by the leadership of David
Epstein, eased by the teaching ideas of Alyson Stibbard and challenged by
the research of Lara Alcock, a remarkable transformation of the way in
which students begin to study analysis took place at Warwick University.
The division of teaching time between lectures and problem-solving by
students in class changed to give student problem-solving pride of place.
Many of the problems the students tackled in this approach to analysis
were taken from the first five chapters of the first edition of this book. The
experience has suggested a number of improvements to the original text.
This new edition is intended to embody these improvements. The most
obvious is the playing down of the Peano postulates for the natural
numbers and algebraic axioms for the real numbers, which affects chapter
1 and the beginning of chapter 2. The second is in the display of
‘summaries’, which now appear when a major idea has been rounded off,
not just at the end of the chapter. The third is an increase in the number of
diagrams, and the fourth is the introduction of simple (and I hope
evocative) names for small theorems, so that they may be cited more
readily than when they only have a numerical reference. There are also
numerous smaller points not just about individual questions. In
particular, there is a suggestion of two column proofs in establishing the
rudimentary properties of inequalities in chapter 2, and least upper
bounds now figure more substantially in chapter 4. The stimulus of
discussions with David Epstein both about overall strategy and about the
details of question after question has been a rare and enriching experience.

I must also thank Paddy Paddam, previously of Cambridge, who
has worked through every question in the text, and made invaluable
comments to me from a student’s eye view. I have also taken the
opportunity to correct and improve the historical references and notes.

Kristiansand
March 2000
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Glossary

qn 27 refers to question 27 of the same chapter.
qn 6.27 refers to question 27 of chapter 6.
6.27� refers to what immediately follows qn 6.27.
6.27� refers to what immediately precedes qn 6.27.

x �A x is an element of the set A;
for example, x � �x, . . .�

x �A x is not an element of the set A
�x � x �A� the set A
or �x: x �A�
A�B A is a subset of B

every member of A is a member of B
x �A� x �B

A�B the union of A and B
�x � x �A or x �B�

A�B the intersection of A and B
�x � x �A and x �B�

A �B �x � x �A and x �B�
A�B the cartesian product

�(a, b) � a �A, b �B�
f: A�B the function f, a subset of A�B,

�(a, f (a)) � a �A, f (a) �B�
A is the domain and B is the co-domain of the
function f

f (A) � f (x) � x �A��B
x� f (x) the function f,

x is an element of the domain of f
N the set of natural numbers

or counting numbers
�1, 2, 3, . . .�
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Z the set of integers
�0,�1,�2, . . .�

Z� the set of positive integers
�1, 2, 3, . . .�

Q the set of rational numbers
�p/q � p � Z, q � Z � �0��

Q� the set of positive rationals
�x � x � Q, 0�x�

R the set of real numbers, or
infinite decimals

R� the set of positive real numbers
�x � x � R, 0�x�

[a, b] closed interval
�x � a	x	 b, x, a, b � R�

(a, b) open interval
�x � a�x� b, x, a, b � R�,
the symbol may also denote the ordered pair, (a, b),
or the two coordinates of a point in R�

[a, b) half-open interval
�x � a	x� b, x, a, b � R�

[a,�] closed half-ray
�x � a	x, a,x � R�

(a,�) open half-ray
�x � a�x, a,x � R�

(a
�
) the sequence �a

�
� n � N, a

�
� R�

that is, a function: N � R

(a
�
)� a For any 
 � 0, �a

�
� a �� 


as n� � for all n�N

�
n

r�
n!

(n� r)!r!
when n � Z�

�
a

r�
a(a� 1)(a� 2), . . . (a� r� 1)

r!

the binomial coefficient when a � R.
���
�
���

a
�

a
�
� a

�
� a

�
� . . .� a

�
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Mathematical induction

Prelimary reading: Rosenbaum, Polya ch. 7.
Concurrent reading: Sominskii.
Further reading: Thurston chs 1 and 2, Ledermann and Weir.

The set of all whole numbers �1, 2, 3, . . .� is often denoted by N. We
will usually call N the set of natural numbers, and, sometimes, the set of
positive integers. Note that N excludes 0.

1 1�� 2� � 3�� . . .� n� 	
n(n� 1)(2n� 1)

6
.

Is this proposition true or false?
Test it when n	 1, n	 2 and n	 3.
How many values of n should you test if you want to be sure it is
true for all natural numbers n?

If we write f (n)	
n(n� 1)(2n� 1)

6
, show that

f (n)� (n� 1)�	 f (n� 1).
Now suppose that the proposition with which we started holds for
some particular value of n: add (n� 1)� to both sides of the
equation and deduce that the proposition holds for the next value
of n.
Since we have already established that the proposition holds for
n	 1, 2, and 3, the argument we have just formulated shows that it
must hold for n	 4, and then by the same argument for n	 5, and
so on.

2 When n is a natural number, 6� � 5n� 4 is divisible by 5.
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Check this proposition for n	 1, 2 and 3.
By examining the difference between this number and
6���� 5(n� 1)� 4, show that if the proposition holds for one
value of n, it holds for the succeeding value of n. When you have
done this you have established the two components of the proof of
the proposition by mathematical induction.

3 Prove the following propositions by induction (some have easy
alternative proofs which do not use induction):

(i) 1� 2� 3� . . .� n	�
�
n(n� 1),

(ii) a� (a� d)� (a� 2d)� . . .� (a� (n� 1)d)

	�
�
n(2a� (n� 1)d),

(iii) 1�� 2� � 3�� . . .� n�	 [�
�
n(n� 1)]�,

(iv) 1 · 2� 2 · 3� 3 · 4� . . .� n(n� 1)	�
�
n(n� 1)(n� 2),

(v) � 2� 4� . . .� 2���	 2�� 1,

(vi) 1�x�x� � . . .� x���	
x�� 1

x� 1
, provided x� 1.

(vii) (optional) 1� 2x� 3x�� . . .� nx��� 	
nx�

x� 1
�

x�� 1

(x� 1)�
,

provided x� 1.

4 Pascal’s triangle, shown here, is defined inductively, each entry
being the sum of the two (or one) entries in the preceding row
nearest to the new entry. The (r� 1)th entry in the nth row is
denoted by (�

�
)

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1
1 . . . . . . . . . . . . . . . 1

and called ‘n choose r’ because it happens to count the number of
ways of choosing r objects from a set of n objects. Notice that we
always have 0� r� n. From the portion of Pascal’s triangle which
has been shown, for example,

�
3

0�	 1, �
3

1�	 3, �
3

2�	 3 and �
3

3�	 1.

From the definition of Pascal’s triangle we have
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�
n

r� 1���
n

r�	�
n� 1

r � , when 0� r� n.

Prove by induction that �
n

r�	
n!

r!(n� r)!
, taking 0!	 1.

Verify that this formula gives �
n

r�	 �
n

n� r� .
What aspect of Pascal’s triangle does this reflect?

5 The Binomial Theorem for positive integral index
Prove by induction that

(1�x)�	�
n

0�� �
n

1� x� �
n

2� x�� . . .��
n

r� x�� . . .��
n

n�x�.
6 Examine each of the propositions:

(i) 2��� � n�,
(ii) n�� n� 41 is a prime number.

Find values of n for which these propositions hold and also a value
of n for which each is false.
If you were to attempt a proof by induction of either of these
propositions, where would the proof break down?

7 Examine the numbers 6�� 5n� 1 and 6���� 5(n� 1)� 1.
Find their difference.
Deduce that if the first of these numbers were divisible by 5 then
the second would also be divisible by 5. Deduce also that if the
second were divisible by 5 then the first would also be divisible by
5.
Is the first number divisible by 5 when n	 1?
Are there any values of n for which these numbers are divisible by
5?
If you were to attempt a proof by induction that the first number
was divisible by 5, where would the proof break down?

8 Define y
�� 	 y, y
��	
dy

dx
, and y
����	

dy
��

dx
.

(i) Let y	 log
�
(1� x), so

dy

dx
	

1

1�x
.

Prove that for n� 1, (1�x)y
����� ny
��	 0.
Deduce that when x	 0, y
����	 (�1)�n!
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(ii) Let y	 arctanx, so
dy

dx
	

1

1�x�
.

Prove that for n� 1,
(1�x�)y
����� 2(n� 1)xy
����� n(n� 1)y
��	 0.
Deduce that when x	 0, y
���	 0 and y
�����	 (�1)�(2n)!

There is ambiguity in the literature on the question of whether N

contains 0 or not. If mathematics starts with sets, and particularly the
empty set, the equipment for counting the elements of finite sets must
include 0. The psychological origins of counting, however, start with 1.
It is this convention we have called natural. Both conventions are
well-established.

    

A proposition, P(n), relating to a natural number n, is valid for all
natural numbers n, if

(a) P(1) is true; the proposition is valid for n	 1 and

(b) P(n)�P(n� 1); the proposition for n implies the proposition for
n� 1.

Historical note

Triangular numbers were studied by Nicomachus (c. 100A.D.) The
sum of the first n squares was known to Archimedes (c. 250B.C.) and
the sum of the first n cubes to the Arabs (c. A.D. 1010). The justification
of these forms uses induction implicitly.

The earliest use of proof by mathematical induction in the literature
is by Maurolycus in his study of polygonal numbers published in
Venice in 1575. Pascal knew the method of Marolycus and used it for
work on the binomial coefficients (c. 1657). In 1713, Jacques Bernoulli
used an inductive proof to make rigorous the claim of Wallis that

���
�
���

r�

n���
�

1

k� 1
as n��.

By the latter part of the eighteenth century, induction was being used
by several authors. The name ‘mathematical induction’ as distinct from
scientific induction is due to De Morgan (1838). The use of inductive
definitions long pre-dates this method of proof.

The well-ordering principle, that every non-empty set of natural
numbers has a least member, is equivalent to mathematical induction
(see Ledermann and Weir, 1996). Well-ordering was used by Euclid
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(VII.31) to show that every integer has a prime factor and by Fermat
(1637) in his proof of the non-existence of integral solutions to
x
� y
 	 z�. However, the recognition of the relationship between
well-ordering and induction is recent, and from an historical point of
view, awareness of the two principles developed independently.

During the nineteenth century there were several attempts to give a
formal description of the natural numbers, notably by H. Grassmann
(1861) and H. von Helmholtz (1887) both of whom assumed the
Principle of Induction. R. Dedekind (1888) defined N as an arbitrary
infinite chain and was able to prove the Principle of Induction. But in
1889, G. Peano, working with Dedekind’s material, adopted the
Principle of Mathematical Induction as one of his five postulates for
defining the natural numbers, and his account remains standard to this
day though Peano’s Postulates admit non-standard models.
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Answers and comments

1 Let P(n) mean ‘1�� 2�� 3�� . . .� n�	 n(n� 1)(2n� 1)/6’.
You checked that P(1), P(2) and P(3) were all true.
The algebra you did showed that P(n)�P(n� 1).
So (by induction) P(n) is true for all natural numbers n.

2 Let P(n) mean ‘6�� 5n� 4 is divisible by 5’.
Because 5 � 5, P(1) is true. Because 5 � 30, P(2) is true. Because 5 � 205,
P(3) is true.
The difference between the expression for n� 1 and the expression for
n is 5 · 6� � 5, which is divisible by 5, so P(n)�P(n� 1). And (by
induction) P(n) is true for all natural numbers n.

3 Take each of the six propositions in turn as P(n). Verify the truth of
P(1) in each case. The algebra behind the proof of P(n)�P(n� 1) is as
follows:

(i) �
�
n(n� 1)� (n� 1)	�

�
(n� 1)(n� 2),

(ii) �
�
n[2a� (n� 1)d]� (a� nd)	�

�
(n� 1)(2a� nd),

(iii) [�
�
n(n� 1)]�� (n� 1)� 	 [�

�
(n� 1)(n� 2)]�,

(iv) �
�
n(n� 1)(n� 2)� (n� 1)(n� 2)	 �

�
(n� 1)(n� 2)(n� 3),

(v) (2�� 1)� 2�	 2���� 1,

(vi)
x�� 1

x� 1
�x�	

x���� 1

x� 1
.

(vii)
nx�

x� 1
�

x�� 1

(x� 1)�
� (n� 1)x�	

nx�� (n� 1)x�(x� 1)

x� 1
�

x�� 1

(x� 1)�

	
(n� 1)x���

x� 1
�
x���� 1

(x� 1)�
.

4 If P(n) is the proposition we are asked to prove for 0� r� n,

�
n

0�	�
n

n�	 1

is easily checked, and incorporates the truth of P(1). If we assume P(n)
and apply it to the Pascal triangle property, we get P(n� 1).
Symmetry about a vertical axis.

5 For the inductive step, one must show that the coefficient of x� in

(1�x)���	 (1�x)�(1�x) is �
n

r� 1���
n

r� .
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6 (i) True for n� 6, false for 7� n.

(ii) True for n� 39, false for n	 40, or a multiple of 41, or 40� k�.

P(n) does not imply P(n� 1).

7 6� � 5n� 1 divisible by 5� 6���� 5(n� 1)� 1 divisible by 5.
But both statements are false because the first statement is false when
n	 1. P(1) is false.

8 (i) (1�x)dy/dx	 1, or (1� x)y
��	 1, so (1�x)y
��� y
��	 0, and
the proposition holds for n	 1.
Suppose (1� x)y
����� ny
�� 	 0, differentiating we have
(1�x)y
����� (n� 1)y
����	 0, and the proposition for n
implies the proposition for n� 1.
When x	 0, y
��	 1 and y
����	 � ny
��. So
y
����	 (�1)�n!� y
����	 (�1)���(n� 1)! and the result holds
by induction.

(ii) Differentiate (1� x�)y
��	 1 twice to get result for n	 1.
Differentiate result for n to obtain result for n� 1. Result follows
by induction.
When x	 0, y
��	 1, y
��	 0 and y
����� n(n� 1)y
��	 0. So
result holds for n	 1.
Also y
���	 0� y
�����	 0, and y
�����	 (�1)�(2n)!
� y
�����	�(2n� 1)(2n� 2)(�1)�(2n)!	 (�1)���(2n� 2)!.
So result holds by induction.
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2

Inequalities

Preliminary reading: Beckenbach and Bellman.
Concurrent reading: Korovkin, Kazarinoff.
Further reading: Thurston ch. F., Ivanov ch. 4.

Positive numbers and their properties

The addition, subtraction, multiplication and division of numbers
will work in this course the way they did for you in school. Their
essential algebraic properties are listed in appendix 1 under the heading
‘algebraic properties of a field of numbers’. Look at this list briefly.
Examine which of these algebraic properties hold for the set of integers

Z 	 �0,�1,�2,�3, . . .�,

and then check that the set of rational numbers

Q 	�
p

q
� p, q � Z, q� 0�

satisfies all these algebraic properties. There is no need to remember the
list for this course. The letter Z is the first letter of the German word
Zahl, meaning number. The letter Q is the first letter of quotient; each
rational number being a quotient of integers. The letter R, the first
letter of the word real, is used to denote the set of real numbers, the
numbers needed for measuring distances along a line. We will presume
that all the algebraic properties of numbers mentioned in appendix 1
hold for the set of real numbers. The difference between Q and R will
be examined in chapter 4.

It is questions of convergence and the finding of limits which
characterise a course in analysis. It is necessary to use inequalities in
order to define these infinite processes. The purpose of this chapter is to
sharpen your awareness of inequalities so that you know how to argue
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with them and what you need to be careful about when you are using
them in an argument.

1 To prepare for a formal treatment of inequalities, determine for
what numbers x you want to claim the inequality 2x� 3x. Check
whether you expect it to hold when x	 1, when x	 0 and when
x	�1.

    

1. If a is a number, then either a	 0, or a is positive or �a is
positive, and only one of these is true. When �a is positive, a
is said to be negative. This property is called the trichotomy
law because of the three possibilities.

2. The sum of two positive numbers is positive. This is also
described by saying that the positive numbers are closed under
addition.

3. The product of two positive numbers is positive. This is also
described by saying that the positive numbers are closed under
multiplication.

We introduce the inequality ‘�’ with the following

  ‘ ’
We say a� b if and only if b� a is positive.

The subset of positive numbers in Z is denoted by Z�, the subset of
positive numbers in Q is denoted by Q�, and the subset of positive
numbers in R is denoted by R�.

We can go on from here to define b� a if and only if a� b,
and to modify these definitions for � and �. We will keep to ‘�’
until some elementary properties have been established. In the
proofs, be careful only to use the properties of ‘�’ which have been
given, or which you have successfully deduced from them. The
answers to these questions have been set out so as to highlight the
reasons for each step.

2 Use the definition of less than to give an inequality equivalent to the
proposition ‘b is positive’.

3 If 0��a, use the definition to prove that a� 0.

4 If a� 0, use the definition to prove that 0��a.
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5 Use the law of trichotomy to prove that for any number a, either
a	 0 or 0� a or a� 0, and only one of these is true.

6 If �b��a, use the definition to prove that a� b.

7 Extended trichotomy law
Apply the trichotomy law to the number b� a to prove that for
any two numbers a and b, either a	 b, or a� b, or b� a, and
exactly one of these is true.

8 If a� b, use the definition, and closure under addition, to prove
a� c� b� c.

9 Transitive law
If a� b and b� c, prove that a� c.

When both a� b and b� c, we usually write a� b� c.
It is the combination of extended trichotomy with the transitive law

that makes it so helpful to mark numbers, in order, along a straight
line.

10 If a� b and c� d, prove that a� c� b� d.

11 (i) If a� b and 0� c, prove that a · c� b · c.
(ii) Deduce that if a� 0 and 0� c, then a · c� 0.
(iii) If 0� a� b and 0� c� d, prove that ac� bd.

12 If a� b and a · c� b · c, prove that 0� c.

This is closely related to question 11(i). But the constructive
methods we have used so far do not provide a proof. If you
suppose that the conclusion is wrong, you can contradict what has
been given. The contradiction is the means of showing that in fact
the conclusion must be right. Such a proof is called a proof by
contradiction.

13 Sketch a graph of the line y	 cx for positive c to illustrate the
consequent relationship between a� b and ca� cb, as in questions
11 and 12. Sketch a graph of the line y	 cx for negative c to
illustrate the consequent relationship between a� b and cb� ca.

14 Give an example to show that it is possible to have b�� a� when
a� b. If 0� a� b, prove that a�� b�.

15 If a� 0, prove that 0� a�.

16 Use qn 15 to prove that 0� 1. Deduce that there is no number a
such that a�	�1 in a number system with inequalities.
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17 If 0� a, 0� b and a�� b�, prove that a� b. Make a proof by
contradiction. Use trichotomy and question 14.

A consequence of this is that if 0� a� b, then 0��a��b. Note that
�(a�) is always positive, or zero.

18 Sketch a graph of y	x� and illustrate on it how a� b may be
compatible with any one of a�� b�, a� 	 b� and b�� a�.

19 (i) With an argument like that of question 14, show that if
0� a� b, then a�� b�.

(ii) With an argument like that of question 17, show that if 0� a,
0� b and a�� b�, then a� b.

20 (i) If 0� a� b, prove by induction that a�� b� for all positive
integers, n.

(ii) If 0� a and 0� b, and a� � b� for some positive integer n,
prove that a� b. A consequence of this is that if 0� a� b,
then 0� ��a� ��b.

21 Sketch graphs of y	x� for various positive integers n, and decide
for which positive integers n a� b� a� � b�.

22 If 0� a, prove that 0� 1/a. Use questions 12 and 16.

23 If 0� a� b, prove that 0� 1/b� 1/a.

24 If a� 0, prove that 1/a� 0.

25 If a� b� 0, prove that 1/b� 1/a� 0.

26 Sketch a graph of y	 1/x and illustrate on it how, provided neither
a nor b is 0, a� b may be compatible either with 1/b� 1/a or with
1/a� 1/b.

27 Sketch a graph of y	 1/(1�x). Decide for what values of x,
1/(1� x)� 1, and then prove your claim formally.

a� b is defined to mean either a� b or a	 b. Thus both 2� 3 and
2� 2 are true. Likewise a� b is defined to mean either a� b or a	 b.

28 True or false?

(i) a� b� a� b� 1. (ii) a� b� a� b� 1.
(iii) a� b� a� b. (iv) a� b� a� b.

29 Bernoulli’s inequality
Use question 11 to prove by induction that if �1� x, then

1� nx� (1�x)� for all positive integers n.

For positive values of x, this can also be deduced from the
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binomial theorem. Sketch graphs of y	 1� nx and y	 (1� x)� for
n	 2 and n	 3 to illustrate Bernoulli’s inequality. Put the graphs
for n	 2 and n	 3 on separate diagrams. Use a computer
graphing package or a graphics calculator if possible.

Summary – properties of order

Trichotomy For any two numbers, a and b, either a� b or
b� a or a	 b, and only one of these holds.

Transitivity If a� b and b� c, then a� c.
Addition If a� b and c� d, then a� c� b� d.

Multiplication If a� b and 0� c, then ac� bc.
If a� b and c� 0, then bc� ac.

Squares 0� a�, for all a.
Powers If 0� a� b, then a�� b� for all positive

integers n.
Suppose 0� a and 0� b. If a�� b� for some
positive integer n, then a� b.

Reciprocals If 0� a� b, then 0� 1/b� 1/a.
If a� b� 0, then 1/b� 1/a� 0.

Bernoulli’s inequality If �1�x, then (1� x)�� 1� nx, for all
positive integers n.

Arithmetic mean and geometric mean

30 If 2, A and 8 are three consecutive terms of an arithmetic
progression, what is the number A? A is called the arithmetic mean
of 2 and 8.
If 2, G, 8 are three consecutive terms of a geometric progression of
positive terms, what is the number G? G is called the geometric
mean of 2 and 8.
Which is the greater, A or G?

31 Write down the arithmetic mean and the geometric mean of the
numbers 2 and 3. Check that (2�

�
)�	 6�



, and deduce that the

arithmetic mean of 2 and 3 is greater than their geometric mean.
Obtain the same result by using the inequality 0� (�3��2)�.

32 (Euclid) If a and b are positive, find the arithmetic mean and the
geometric mean of the numbers a� and b�. Which of the means is
greater? Under what circumstances are the two means equal?
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33 If a and b are positive, prove that

�(ab)� �
�
(a� b).

a b

ab�

Under what circumstances can there be equality?

34 For any positive number a, prove that 2� a� (1/a).

35 ‘In a remote village, the (only) greengrocer uses a scale-balance and
a 1 kg weight. Unfortunately, as a result of an accident, the balance
breaks and the greengrocer, in repairing it, does not get the point
of balance exactly in the middle, but slightly offset.

A customer enters and asks for 2 kg of apples. The greengrocer
places his 1 kg weight in the left-hand pan and fills the right-hand
pan with apples until the scales balance. He then empties the apples
into a brown paper bag. Now he puts the 1 kg weight to the
right-hand pan and fills up the left-hand pan with apples until the
scales balance. He then adds these apples to those in the brown
paper bag and gives the lot to the customer.’ (Law of moments:
when the scale pans balance, the weight in one pan times the length
of its scale arm is equal to the weight in the other pan times the
length of its scale arm.) Decide between

(1) The customer gets 2 kg of apples.
(2) The customer gets more than 2 kg of apples.
(3) The customer gets less than 2kg of apples.

36 For a given perimeter, what shape of rectangle gives the greatest
area?

37 If x and a are both positive numbers, what are the arithmetic and
geometric means of the numbers x and a�/x?
If x

�
� 0 and x

�
is defined by x

���
	�

�
(x

�
� a�/x

�
), show that

a�x
���

�x
�
, for n� 2.

38 If a
�
and b

�
are given positive numbers with a

�
� b

�
, and two

sequences of positive numbers are defined by
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a
���

	�(a
�
b
�
) and b

���
	�

�
(a

�
� b

�
),

prove that

(i) 0� a
�
� a

���
� b

���
� b

�
,

(ii) 0� b
���

� a
���

� b
���

� a
�
	 �

�
(b

�
� a

�
),

(iii) 0� b
���

� a
���

� (�
�
)�(b

�
� a

�
).

So the two means get closer together as n increases.

(iv) Prove that b
���

� a
���

	�
�
(�b

�
��a

�
)� and that when

1� a� b, �b��a� �
�
(b� a).

(v) If a
�
	 1 and b

�
	 2, show that b

�
� a

�
� 1/2
�, so the two

sequences close in very fast.

39 (optional) If a regular n-gon is inscribed in a circle of unit radius,
each side has length 2 sin�/n, so its perimeter is 2n sin�/n. Denote
this perimeter by I

�
. If a regular n-gon is circumscribed about a

circle of unit radius, each side has length 2 tan�/n, so the perimeter
is 2n tan�/n. Denote this perimeter by C

�
.

Prove that I
��

	�(I
�
C

��
) and that C

��
	

2I
�
C

�
I
�
�C

�

.

Let a
�
	

1

C
��

and b
�
	

1

I
��

.

Deduce that a
���

	�
�
(a

�
� b

�
) and b

���
	�(b

�
a
���

).
Thus 0� a

�
� a

���
� b

���
� b

�
.

Prove that b
���

� a
���

� �


(b

�
� a

�
), so the two sequences close in

on each other. Check that a
�
	 �

�
and b

�
	 1/(4�2). What number

do you think a
�
and b

�
approach as n increases? (If you run a

computer program which gives successive values of a
�
and b

�
you

may be surprised to see that the terms of the two sequences
approach each other much more slowly than the terms of the
sequences in qn 38.)

Completing the square

40 (i) For what value of c is x� � 6x� c a perfect square?
(ii) For what value of d is 4x�� 6x� d a perfect square?
(iii) What expression for e will make a�x�� abx� e a perfect

square?
(iv) Assuming that a� 0, find a formula for f such that the

equation ax�� bx� c	 0 is equivalent to the equation
(ax� f )�	 f � � ac. Solve this equation for x, when f� � ac.
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41 Use the identity a�x�� abx� ac	 (ax��
�
b)�� ac��



b� to show

that when 0� a, c� b�/4a� ax�� bx� c, for all values of x.
Is equality possible? Illustrate on a graph.

42 If 0� a, prove that 0� ax�� bx� c, for all values of x, if and
only if b� � 4ac.
If b�� 4ac, is it possible to have ax�� bx� c	 0?
What is the analogous claim if a� 0?

The sequence (1� 1/n)n

43 Simplify the product (b� a)(b�� b���a� b���a� � . . .� a�).
Check that your answer will imply 1.3(vi).

Let 0� a� b.

Show that (n� 1)a��
b���� a���

b� a
� (n� 1)b�.

44 Use a calculator to find

�1�
1

2�
�
,��

1

3�
�
,�1�

1

4�


,�1�

1

5�
�

to two places of decimals. Denote these numbers by a
�
, a

�
, a



and

a
�
respectively. And in general let

a
�
	�1�

1

n�
�
.

45 Put b	 1�
1

n
and a	 1�

1

n� 1

in the right-hand inequality of qn 43 to prove that a
�
� a

���
(with

the notation of qn 44). Thus 2� a
�
, for all n.

46 Use a calculator to find

�1�
1

2�
�
,�1�

1

3�


,�1�

1

4�
�
,�1�

1

5�
�

to two places of decimals. Denote these numbers by b
�
, b

�
, b



and

b
�
respectively. And in general let

b
�
	�1�

1

n�
���

.

47 If (1� 1/n)(1� 1/x)	 1, prove that x	 n� 1.

Deduce that b
�
	�1�

1

n�
���

	�1�
1

n� 1�
�
����

,
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with the notation of qn 46.

48
Put b	 1�

1

n� 1
and a	 1�

1

n

in the left-hand inequality of qn 43 to prove that b
�
� b

���
(with

the notation of qn 46).

49 Justify the inequalities a
�
� a

���
� b

���
� b

�
, with the notation of

44 and 46, and use 46 to show that a
�
� 3 for all positive integers

n. (This result will be used in qn 4.36.)

nth roots

50 If 1� a, prove that

(i) 1� a� a�� . . .� a�,

(ii) 1� a� a�� . . .� a���

n
�

1� a� a�� . . .� a��� � a�

n� 1
,

(iii) a� � 1

n
�
a���� 1

n� 1
(from qn 1.3(vi)),

(iv) if a	 b���
����, (n� 1)(����b� 1)� n( ��b� 1).

51 Deduce from qn 49 that if n� 3, then (1� 1/n)� � n, and so
����(n� 1)� ��n.

1

0.5

1

1.5

2 3 4 5 6 7 8 9 10
n

n
n

Summary – results on inequalities

Arithmetic and geometric means
If a and b are positive, then �(ab)� �

�
(a� b).
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For positive a, a� 1/a� 2.
Completing the square

Provided a� 0,
ax�� bx� c	 (ax� b/2)�/a� c� b�/4a.
Provided a is positive, ax�� bx� c� 0 for all
values of x� b� � 4ac.

(1� 1/n)� (1� 1/n)� increases with n and
2� (1� 1/n)�� 3.

nth roots When a� 1, (n� 1)(����a� 1)� n( ��a� 1).
��n decreases with n, when n� 3.

Absolute value



We define � a � 	�
a
�a

when 0� a, and

when a� 0.

52 Sketch the graph of the absolute value function y	 �x � .

The results that follow on absolute value may be scanned rather than
proved. The results are essential for the rest of the book, but the proofs
are not notably instructive. We will repeatedly appeal to questions 61
and 63.

53 Prove that max(�a,a)	 � a � .

54 Prove that a� � a � and � � a � � a, for all a. Thus � � a � � a� � a � ,
for all a.

55 Prove that 0� � a � for all a. Deal with a positive and a negative
separately.

56 Prove that � a ��	 a� for all a.

57 Prove that � a �	 � �a � for all a.

Beware of presuming that �a has to be negative. �2 must be
negative, but �a need not be. Another way of writing this result is
��a �	 � a � .

58 Prove that � ab �	 � a � · � b � for all a and b.

59 Prove that � a/b �	 � a � / � b �, provided b� 0.
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60 On the graph of y	 � x � (qn 52) draw the line y	 b, for some
positive b. For what values of x do you get �x � � b?

Use the equivalence of a� b with �b��a, and of �b� a with
�a� b (qn 6) to show that �b� a� b implies �b��a� b, and
deduce that �b� a� b implies � a �� b.
Conversely, show that if � a �� b, or max(�a,a)� b, then
�b� a� b.

61 If a and b are two numbers of the same sign verify that
� a� b � 	 � a � � � b � .
If a and b are two numbers of different sign verify that
� a� b � � � a � � � b � .

From qn 54 we have � � a �� a� � a � and � � b �� b� � b � for all
numbers a and b. Now use qn 10 to obtain
� � a � � � b � � a� b� � a � � � b � , and then qn 60 to prove that
� a� b � � � a � � � b � for any two numbers a and b.

If one substitutes a	 x� y and b	 y� z in this inequality, we get
�x� z �� � x� y �� � y� z � . Now � x� y � is the distance from x to
y on the number line, so this inequality says that for any three
points on the number line, the sum of the distances between two
pairs cannot be less than the distance between the third pair, and it
is from this that the name triangle inequality stems.

62 Deduce from qn 61 that � a� b �� � a �� � b �.
Deduce also from qn 61 that � a� b� c � � � a �� � b � � � c � .

63 By putting b	 c� a in the triangle inequality,
prove that � c �� � a � � � c� a � ,
and deduce that � a �� � c �� � a� c �	 � c� a � .

Prove further that �� c � � � a ��� � c� a � . This result can be
pictured by marking two points on the real line drawn on tracing
paper. If the paper is folded at 0 so that the line falls onto itself, the
left-hand side of the inequality is the folded distance between a and
c, while the right-hand side gives the unfolded distance between a
and c.

64 The triangle inequality in two dimensions
The strange name given to the inequality � x� y � � �x � � � y � is
more understandable in terms of the inequality for complex
numbers � z�w �� � z � � �w � . This result is the claim that for a
triangle in the Argand diagram, the sum of the lengths of two sides
is greater than the third. We prove this by considering the triangle
in R � R with vertices O	 (0, 0), A	 (a, b) and P	 (p, q).
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(i) Show that for any real numbers a, b, p and q,
(ap� bq)�� (a�� b�)(p�� q�).

(ii) By taking the square root of the inequality in (i) deduce that

	(a� p)�� (b� q)��	a�� b��	p�� q�.

Thus �AP � � �OA �� �OP � .

Summary – results on absolute value

Definition When 0� a, � a �	 a. When a� 0, � a �	�a.
Multiplication � ab �	 � a � · � b �

qn 58
Triangle inequality

qn 61
� a� b �� � a � � � b �

Theorem
qn63

�� a �� � b �� � � a� b � .

Historical note

Early steps towards the arithmetical axiomatisation of the number
system were taken by G. Peacock in 1830 and 1845, with his principle
of permanence of forms. Precise arguments assuming the total ordering
of the positive real numbers pervade Euclid’s Elements. The notation
� and� was introduced by Harriot and first appeared in print in 1631.
The symbols � and � were first used in France about one hundred
years later. Bernoulli’s inequality was proved by Jakob Bernoulli in
1689. The arithmetic mean — geometric mean inequality appears in
Euclid’s Elements (II.5, V.25 and lemma between X.59 and X.60). The
general form of this inequality, for n positive numbers, was established
by C. Maclaurin in 1729. The sequence (1� 1/n)� was first investigated
by L. Euler (1736) who named its limit with his own initial. The
notation for absolute value �x � was due to Weierstrass who used it in
his lectures in Berlin from 1859. It did not appear in print until 1877.
Bolzano (1817) wrote x��1, where we would write �x �� 1. Harnack
(1881) wrote absm and Jordan (1882) wrote modm for �m � .
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Answers and comments

1 Holds for x positive, not for x	 0 or for x negative.

2 proposition justification

b is positive given
� b� 0 is positive algebra
� 0� b definition

3 proposition justification

0��a given
� �a� 0 is positive definition
� 0� a is positive algebra
� a� 0 definition

4 proposition justification

a� 0 given
� 0� a is positive definition
� �a� 0 is positive algebra
� 0��a definition

Notice the difference between questions 3 and 4. Together they
show that 0� �a� a� 0. Question 4 is the converse of question
3. Question 3 is the converse of question 4.

5 proposition justification

a is positive
� 0� a qn 2

�a is positive
� a� 0 qns 2, 3 and 4

a	 0 or a is positive or �a is trichotomy
positive

� a	 0 or 0� a or a� 0 from above

6 proposition justification

�b� �a given
� � a� (�b) is positive definition
� b� a is positive algebra
� a� b definition
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7 proposition justification

b� a	 0
� a	 b algebra

b� a is positive
� a� b definition

�(b� a) is positive
� a� b is positive algebra
� b� a definition

b� a	 0 or b� a is positive or trichotomy
�(b� a) is positive

� b� a	 0 or a� b or b� a from above

8 proposition justification

a� b given
� b� a is positive definition
� (b� c)� (a� c) is positive algebra
� a� c� b� c definition

9 proposition justification

a� b given
� b� a is positive definition

b� c given
� c� b is positive definition

� (b� a)� (c� b) is positive closure under addition
� c� a is positive algebra
� a� c definition

10 proposition justification

a� b given
� b� a is positive definition

c� d given
� d� c is positive definition

� (b� a)� (d� c) is positive closure under addition
� (b� d)� (a� c) is positive algebra
� a� c� b� d definition
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11 (i) proposition justification

a� b given
� b� a is positive definition

0� c given
� c is positive definition

� (b� a) · c is positive closure under
multiplication

� b · c� a · c is positive algebra
� a · c� b · c definition

(ii) Put b	 0. (iii) ac� bc� bd.

12 proposition justification

a� b given
b� a positive definition
a · c� b · c given

c	 0 hypothesis
� a · c	 b · c algebra
This contradicts what is given so hypothesis is false.

c� 0 hypothesis
� 0� c is positive definition
� (b� a) · (�c) is positive closure under multiplication
� a · c� b · c is positive algebra
� b · c� a · c definition
This contradicts what is given so hypothesis is false.

� 0� c trichotomy and qn 11

Sherlock Holmes said that when what is impossible has been
eliminated, what remains, however improbable, must be the truth.
The only difference between the ‘Sherlock Holmes method’ and a
mathematical proof by contradiction, is that in mathematics the
final conclusion is what we were really expecting all along.

14 �2� 1, but 1�� (�2)�	 4.
proposition justification

a� b and 0� a given
� a�� ab qn 11

a� b and 0� b given, transitivity
� ab� b� qn 11

� a�� ab and ab� b� above
� a�� b� transitivity
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15 proposition justification

a� 0 given
� 0� a or 0� �a trichotomy, qn 5
� 0� a� or 0� (�a)� positive closure for

multiplication

a�	 (�a)� algebra
� 0� a�

16 0� 1� 	 1. So �1 is negative, and no square is negative from question
15.

17 Given 0� a and 0� b; a	 b� a�	 b�; b� a� b�� a� from question
14. Both these conclusions conflict with what is given so a� b, by
trichotomy.

19 (i) 0� a� b� a�� a�b� ab�� b�.
(ii) Given 0� a and 0� b; a	 b� a�	 b�; b� a� b�� a� from

part (i). Both these conclusions conflict with what is given, so
a� b, by trichotomy.

20 (i) The result has already been established for n	 1 (trivial), n	 2
(question 14) and n	 3 (question 19(i)). a�� b�� a���� ab�.
a� b� ab�� b���. So a���� b��� by transitivity. The result
follows by induction.

(ii) Given 0� a and 0� b; a	 b� a�	 b�; b� a� b�� a� by part
(i). Both these conclusions conflict with what is given, so a� b,
by trichotomy.

21 The equivalence holds for odd integers n.

22 0� a and 0 · (1/a)	 0� 1	 a · (1/a), from question 16, implies 0� 1/a
from question 12.

23 0� 1/a and 0� 1/b from question 22. So a · (1/a) · (1/b)� b · (1/a) · (1/b),
from question 11. Now 0� 1/b� 1/a, claiming transitivity.

24 a� 0 and a · (�1/a)	�1� 0	 0 · (�1/a) (from question 16) implies
0��1/a (question 12). So 1/a� 0 from question 3.

25 1/a� 0 and 1/b� 0 from question 24. So 0� (�1/a)(�1/b)	 1/ab
from question 4 and positive closure. Thus a� b implies
a · (1/ab)� b · (1/ab) or 1/b� 1/a and by transitivity 1/b� 1/a� 0.

27 Apply trichotomy to 1�x. 1� x	 0 is inadmissible.
1�x� 0� 1/(1�x)� 0. 1� x� 0 and
1/(1� x)� 1� 1� 1� x� 0�x, so �1�x� 0.
Now �1�x� 0� 0� 1� x� 1� 1� 1/(1� x).

28 (i) True. (ii) False, try a	 3 and b	 2�
�
.

(iii) True. (iv) False, try a	 b	 2.
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29 Result trivial for n	 1.
�1�x�0�1�x, so 1�nx�(1�x)�� (1�nx)(1�x)�(1�x)���

�1�(n�1)x�nx�� (1�x)���

�1�(n�1)x� (1�x)���.

30 A	 5, G	 4.

31 A	 2�
�
, G	 �6. (2�

�
)�� 6. Also 2�6� 5.

32 0� (a� b)�� 2ab� a�� b�. Equality only when a	 b.

33 0� (�a��b)�� 2�a�b� a� b� �a�b� �
�
(a� b). Equality only

when �a	 �b.

34 Put b	 1/a in qn 33.

35 If the arms of the scale are l (on the left) and r (on the right), and the
two amounts of apples weighed out are v (on the left) and w (on the
right), lv	 r · 1 and rw	 l · 1.
Now v�w	 r/l� l/r� 2, from qn 34 unless l	 r.

36 If the sides of the rectangle are of length a and b, the constant
perimeter	 2(a� b), while the area is ab. �ab� �

�
(a� b) which is

constant, so �ab and thus the area is maximum when a	 b.

37 G	 a, A	�
�
(x� a�/x). GM�AM� a� x

���
�x

�
, except possibly

for n	 1. This is the basis of Heron’s method for finding square roots.

38 (i) needs GM�AM and induction.
(iii) needs (ii) and induction.
(v) b

���
� a

���
� �

�
(b

�
� a

�
)�.

Such pairs of sequences were investigated by Gauss.

39 Both a
�
and b

�
approach 1/2� as n increases.

40 (i) c	 9, (ii) d	 (3/2)�,
(iii) e	 (b/2)�, (iv) f	 b/2,

x	 (�f��( f �� ac))/a	 (�b� �(b�� 4ac))/2a.

41 From the identity, a�x�� abx� ac� ac��


b�. Since a� 0,

ax�� bx� c� (ac��


b�)/a. Equality is possible only when

ax� �
�
b	 0.

42 ax�� bx� c	 (ax� �
�
b)�/a� (4ac� b�)/4a. For 0� a, the right-hand

side is positive or 0 for all x precisely when 4ac� b� is positive or
zero. If b� � 4ac, the right-hand side is always positive, and so
cannot	 0.
For a� 0, ax�� bx� c� 0 provided b�� 4ac.

44 a
�
	 2.25, a

�
	 2.37, a



	 2.44, a

�
	 2.49.

46 b
�
	 3.37, b

�
	 3.16, b



	 3.05, b

�
	 2.99.
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49 The first and last inequalities were established in qns 45 and 48. The
middle one only needs 1� 1� 1/n. As a consequence any a

�
is less

than any b
�
.

b
�
	 (1� 1/5)�	 (6/5)�	 46 656/15 625� 46 875/15 625	 3.

50 (i) Since 0� 1, this involves repeated use of qn 11(i).

51 From qn 49 (1� 1/n)�� 3, so for n� 3, (1� 1/n)�� n.
((n� 1)/n)�� n� (n� 1)�� n���.

52

0

53 When a	 0, a	 �a	 � a � . When a is positive, �a� 0� a	 � a � .
When a is negative, a� 0� �a	 � a � .

54 a� � a � follows from qn 53. So also �a� � a � �� � a �� a, from qn 6.

55 The result follows from the definition when a� 0. When a� 0, use
qn 4.

56 � a � �	 (�a)(�a)	 a�	 (�a)(�a).

57 � a � 	max(�a, a)	max(a,�a)	 ��a � .

58 (�a)(�b)	�(ab) sums up the four non-zero cases.

59 Provided b� 0, � a �	 � (a/b) · b �	 � (a/b) � · � b � by qn 58.

60 When x lies between �b.
If �b� a� b and �b��a� b, then max(�a, a)� b and � a � � b.
If � a �� b, then max(�a, a)� b, so a� b and �a� b. This last
inequality implies �b� a, so together we have �b� a� b.
The work in this question proves that � a �� b��b� a� b.

61 � � a �� a�� a � and � � b �� b� � b � together imply
� � a �� � b �� a� b� � a �� � b � , so from qn 60, � a� b �� � a � � � b � .

62 For the first inequality put �b for b in the triangle inequality.
� a� b� c � � � a � � � b� c �� � a �� � b � � � c � .

63 The result �� c �� � a ��� � c� a � follows from qn 60.

64 (i) 0� (aq� bp)�.
(ii) Keep the negative sign on square rooting the left-hand side;

multiply by 2 and add a�� b�� p�� q�, to both sides.
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3

Sequences
A first bite at infinity

Preliminary reading: Hemmings and Tahta, O’Brien.
Concurrent reading: Hart.
Further reading: Knopp.

The notion of a sequence is a familiar and intuitive one. The following
examples of sequences of numbers illustrate this notion.

1, 2, 3, 4, 5, . . .

2, 4, 6, 8, 10, . . .

�
�
, �


, �
�
, �
��
, �
��
, . . .

3, 3.1, 3.14, 3.141, 3.1415, . . .

�1, 1, �1, 1, �1, . . .

�
�
, �
�
, �


, 

�
, �
�
, . . .

The general way of writing down a sequence is

a
�
, a

�
, a

�
, . . ., a

�
, . . .

so that for each natural number n, there is an element of the sequence,
a
�
. This means that a sequence must be an infinite (not finite) list of

terms, though repetition is allowed as in the fifth example above. Such
a sequence is denoted by (a

�
). a

�
is the single number which appears as

the nth term of the sequence. (a
�
) refers to an infinite list of numbers, in

order; (a
�
) is the sequence as a whole.

1 For each of the sequences listed above, except the fourth, suggest a
formula for the nth term, a

�
. (A sequence may or may not have a

formula to define it.)
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n

an

2 It is possible to draw a graph of the sequence (a
�
) by plotting the

points (n, a
�
) on a conventional cartesian graph of R � R.

Draw the graphs of the first five terms of the six sequences given
above.

Although graph drawing provides a useful picture of the first few terms
of the sequence, it does not illustrate what happens in the long run.
Most of the important questions about sequences, which go on for ever,
are not decided by the first few terms but depend on the behaviour of
the nth term a

�
as n gets larger and larger, and these terms are not

illustrated on the graphs you have drawn.

3 (a) According to the definition at the start of this chapter, why
do the integers from 1 to 10, in order, not form a sequence?
Or the integers from 1 to a million, in order?

(b) Construct a sequence whose terms take only one value. Such
a sequence is called a constant sequence.

(c) Construct a sequence whose terms take exactly three values.
(d) Construct a sequence whose terms, a

�
, take exactly three

values but which becomes constant for large n.

The central property of sequences we will study is that of convergence.
This turns out to be surprisingly difficult to define. In order to become
familiar with sequences, we first examine a number of more
straightforward properties which we will find useful.

Monotonic sequences

4 Test each of the sequences (i)—(vii), defined below, to determine
whether any one or more of the following four properties, (a)—(d),
holds for all values of n.
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(a) a
�
� a

���
. (b) a

�
� a

���
.

(c) a
�
� a

���
. (d) a

�
� a

���
.

(i) a
�
	 n, (ii) a

�
	 1/n,

(iii) a
�
	 (�1)�, (iv) a

����
	 n, a

��
	 n,

(v) a
�
	�1/n, (vi) a

�
	 1,

(vii) a
�
	 2��.

When property (a) in qn 4 holds, the sequence is said to be strictly
monotonic increasing or just strictly increasing.

When property (b) holds, the sequence is said to be monotonic
increasing or just increasing.

When property (c) holds, the sequence is said to be strictly
monotonic decreasing or strictly decreasing.

When property (d) holds, the sequence is said to be monotonic
decreasing or decreasing.

When any one of (a), (b), (c) or (d) holds, the sequence is said to be
monotonic.

The seemingly bizarre status of sequence 4(vi) is a consequence of
wanting useful definitions. The fact that constant sequences satisfy
conditions (b) and (d) simultaneously is not a sufficient reason to revise
our definitions, because experience has shown that these definitions, as
they stand, lead to simple statements of theorems and proofs.

Bounded sequences

5 Test each of the sequences (a
�
) (i)—(iv) defined here, to determine

whether either or both of the following properties applies. Sketch a
graph of the first few terms.

(a) There is a number U such that a
�
�U for all n.

(b) There is a number L such that L � a
�
for all n.

(i) a
�
	 (�2)�, (ii) a

�
	 (�1)�/n,

(iii) a
�
	 sin n, (iv) a

�
	�n.

When property (a) in qn 5 holds, the sequence (a
�
) is said to be

bounded above, and the number U is called an upper bound of the
sequence.

When property (b) holds, the sequence is said to be bounded below,
and the number L is called a lower bound of the sequence.

When both properties (a) and (b) hold, so that there are numbers L
and U such that L � a

�
�U, for all values of n, the sequence (a

�
) is said

to be bounded.
A sequence which is neither bounded above nor bounded below is
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said to be unbounded. (Some authors say that a sequence is unbounded
when it is either not bounded above, or not bounded below, but
differing conventions in this matter will not affect the formulation of
any theorems in this book.) Notice that upper bounds and lower
bounds, if they exist, are not unique: for if U is an upper bound, then
so is U� 1, and if L is a lower bound, then so is L � 1.

n

an

U + 1

U 

Beware of the language here. The sequence 1, 2, 3, . . ., n, . . . is neither
bounded nor unbounded! But the definitions, as we have given them,
lead to simple statements of theorems and proofs.

6 A sequence (a
�
) is known to be monotonic increasing.

(i) Might it have an upper bound?
(ii) Might it have a lower bound?
(iii) Must it have an upper bound?
(iv) Must it have a lower bound?

Give an example to show each possibility or impossibility.
How must your answers be revised if the same questions were
asked about an arbitrary monotonic decreasing sequence?

7 If a sequence is not bounded above, must it contain

(i) a positive term,
(ii) an infinity of positive terms?

Subsequences

The sequences

2, 4, 6, 8, . . ., 2n, . . .,
1, 3, 5, 7, . . ., 2n� 1, . . .,
1, 4, 9, 16, . . ., n�, . . .,
2, 4, 8, 16, . . ., 2�, . . .,
1, 3, 6, 10, . . ., �

�
n(n� 1), . . .,

5, 6, 7, 8, . . ., n� 4, . . .,
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or generally, the strictly increasing sequence

n
�
, n

�
, n

�
, n



, . . ., n

�
, . . .,

all provide examples (the last is a thoroughly general example) of
infinite subsets of the natural numbers, N.

With any such infinite subset, a subsequence of a sequence may be
constructed.

Thus from the sequence a
�
, a

�
, a

�
, . . ., a

�
, . . .

various subsequences, such as

a
�
, a



, a

�
, . . ., a

��
, . . .

a
�
, a



, a

�
, . . ., a

��
, . . .

a
�
, a

�
, a

�
, . . ., a

��

, . . .,

may be constructed (using the first, the third and the sixth of the
subsets of N given above), or in general

a
��
, a

��
, a

��
, . . ., a

��
, . . ..

You should think of n
�
as the first suffix (or value of n) used in the

subsequence, n
�
as the second suffix used in the subsequence, and so on.

One erases some (or none!) of the terms of a sequence to obtain a
subsequence.
A subsequence of a sequence (a

�
) is an infinite subset of the a

�
with the

terms of the subsequence occurring in the same order as in the original
sequence.
In the definition of a sequence (a

�
), n runs through all of the natural

numbers, N, in order.
With the general notation for a subsequence (a

��
), n

�
runs through some

(or all) of the natural numbers in order (and i runs through them all).

8 Why are none of the following sets, as they stand, subsequences of
(a

�
)?

(i) a
��
, a

��
, a

��
, a


�
, a

��
, a

��
, a

��
, a

��
, a

��
, a

���
;

(ii) a
�
, a



, a

��
, a

�
, . . ., a

��
, a

����
, . . .;

(iii) (a
���

);
(iv) (a

����
).

9 For the sequence (a
�
)	 10, �11, �12, 13, 14, �15, �16, 17, 18,

�19, �20, 21, 22, . . . identify n
�
, n

�
, n

�
, n



and n

�
for

(i) the subsequence of positive terms;
(ii) the subsequence of negative terms;
(iii) the subsequence of even terms;
(iv) the subsequence of odd terms.
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10 (a
��
) is a subsequence of (a

�
).

(i) (a) Is it possible to have n
�
� n

�
? (b) Is it possible to have

n
�
	 n

�
? (c) What is the least possible value of n

�
for any

subsequence? (d) Name a term of (a
��
) which you know comes

later in the sequence (a
�
) than a

���
.

(ii) If i� j, does it follow that n
�
� n

�
and that a

��
� a

��
?

11 A sequence (a
�
) is known to be monotonic increasing, but not

strictly monotonic increasing.

(i) Might there be a strictly monotonic increasing subsequence of
(a

�
)?

(ii) Must there be a strictly monotonic increasing subsequence of
(a

�
)?

12 If a sequence is bounded, must each of its subsequences be
bounded?

13 (i) If the subsequence a
�
, a

�
, a



, . . ., a

���
, . . . is bounded, does it

follow that the sequence (a
�
) is bounded?

(ii) If the subsequence a
�
, a



, a

�
, . . ., a

���
, . . . is bounded, does it

follow that the sequence (a
�
) is bounded?

(iii) If the subsequence a
���

, a
���

, a
���

, . . ., a
���

, . . . is bounded,
does it follow that the sequence (a

�
) is bounded?

We describe the result of qn 13 by saying that if a sequence is
eventually bounded, then it is bounded. Each of the sequences of qn 13 is
called a shift of the sequence (a

�
). Obviously every shift of a bounded

sequence is bounded (qn 12), and from qn 13, if a shift is bounded, then
the whole sequence is bounded.

14 (a) If the subsequence (a
��
) is bounded, does it follow that (a

�
) is

bounded?
(b) A sequence (a

�
) is known to be unbounded.

(i) Might it contain a bounded subsequence?
(ii) Must it contain a bounded subsequence?

Look back to the definition of bounded and unbounded.

Rather unexpectedly, it is possible to show that any sequence has a
monotonic subsequence. To prove this we will use the notion of a floor
term of a sequence. We will call a term of a sequence a ‘floor term’
when none of its successors is strictly less. The term a

	
is a ‘floor term’

if a
�
� a

	
when n� f. A ‘floor term’ is a lower bound for the rest of the

sequence. The phrase ‘floor term’ is used in questions 15 and 16, and
not again in the course.
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n

15 Underline the floor terms in each of the following sequences.

(i) �1, �
�
, ��

�
, �


, ��

�
, �
�
, . . ., (�1)�/n, . . .

(ii) 1, 0, 1, 0, 1, �


, 1, �

�
, 1, �

��
, . . ., 1, ����


�
, . . .

(iii) �1, 2, �3, 4, �5, 6, . . ., (�1)�n, . . .

Sketch a graph of the first six terms of each of these sequences and
circle the points corresponding to floor terms.

16 (i) If an arbitrary sequence contains an infinite number of floor
terms, show that they form a monotonic increasing
subsequence.

(ii) If an arbitrary sequence contains just a finite number of floor
terms, and the last one is a



, form a strictly decreasing

subsequence with a

��

as its first term.
(iii) If an arbitrary sequence contains no floor terms at all, form a

strictly decreasing subsequence with a
�
as its first term.

The theorem proved in qn 16 guarantees the existence of a monotonic
subsequence even for a sequence such as (sin n).

n

a n

1

0.5

1

0.5

sin n
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Sequences tending to infinity

17 Describe the following four sequences saying whether or not they
are monotonic and whether or not they are bounded above or
below.

(i) 1, 1, 2, 1, 3, 1, . . ., n, 1, . . .
(ii) �1, 2, �3, 4, �5, . . ., (�1)�n, . . .
(iii) 2, 1, 4, 3, . . ., 2n, 2n� 1, . . .
(iv) 11, 12, 11, 12, . . ., 11, 12, . . .

In each case decide whether there is a stage beyond which all terms
in the sequence are

(a) greater than 1, in which case we say that the sequence is
eventually greater than 1,

(b) greater than 10, so that the sequence is eventually greater
than 10,

(c) greater than 100, so that the sequence is eventually greater
than 100.

Only sequence (iii) is said to tend to �� (plus infinity).

We say that a sequence tends to �� when any number, C, however
chosen, is eventually a lower bound for the sequence. So a sequence
must pass infinitely many tests if it is to be said to tend to �� because
there are infinitely many choices for C, and the terms of the sequence
must eventually exceed each of them.

For each value of C, we look for a value N of n sufficiently great to
make a

�
�C, for all n�N.

18 Select values of C to demonstrate that qn 17(i), (ii) and (iv) do not
tend to ��.

n

a n

C

N
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In relation to a sequence (a
�
), the term ‘eventually’, the phrase ‘provided

n is large enough’, and the phrase ‘for sufficiently large n’ each mean
‘for all n greater than some fixed number N’.
We can now gather the discussion into a formal definition and say that

the sequence (an) tends to +���,
if and only if, given any number C, there is a number N such that
n � N � an � C.

Yet another way to express this definition is to say that, for each
number C, a

�
�C for all but a finite number of terms of the sequence.

‘(a
�
) tends to infinity’ is often written (a

�
)� �� as n� �.

Archimedean order and the integer function

An important property of the real numbers is

given any number A, there is an integer n, which is greater than A

This is called the Archimedean property. It was first pointed out by the
Greeks, Archimedes among them, who probably wanted to say that if
you repeatedly combine together straight line segments of length 1, you
will never cover an area A, no matter how many times (n times) you do
so. In contrast, when working with real numbers only, a number A can
always be exceeded by an integer.

By making our assumptions explicit and precise, we can see the
logical relations between different properties. For this reason you
should cite the Archimedean property, when you use it, at least in this
chapter. Later on, the Archimedean property can be assumed.

To see that the sequence of natural numbers tends to infinity we
argue as follows. If C is any number, by the Archimedean property, we
can choose a positive integer n such that C� n. Then n� n� 1, so
C� n� 1. By induction all subsequent natural numbers are also
greater than C. So C is an eventual lower bound for the sequence of
natural numbers.

It also follows that there is an integer less than any given number
A: if we apply the Archimedean property to �A there is an integer n
such that �A � n, and so �n�A. So any real number A divides the
set of integers into two sets, those less than or equal to A and those
greater than A. If for a given number A, m and n are integers such that
m�A� n, we need only scrutinise the n�m integers, m,
m� 1, . . ., n� 1 to determine the greatest integer less than or equal to
A. We denote this integer by [A].

[�]	 3, [2]	 2 and [�2.1]	�3. [A]�A� [A]� 1.
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-1 0 1 2 [C ] [C + 1]

C

19 (i) Rewrite [A]�A� [A]� 1 in the equivalent form
. . .� [A]� . . ..

(ii) (a) For each real number x, could there be an integer N(x)
such that N(x)� x�N(x)� 1?

(b) For each real number x, could there be an integer M(x)
such that M(x)� x�M(x� 1)?

(c) For each real number x, you know how to find an integer
K(x) such that K(x)� x�K(x� 1). Can you find more
than one way of defining K(x) to satisfy this condition?

20 Prove that (�n)��� as n� �.

21 (a) Let y be a fixed positive number. Show that the sequence
(ny)� ��.

(b) Let x� 1, so that for some positive y, x	 1� y. Use
Bernoulli’s inequality (qn 2.29), to show that x�� 1� ny, and
deduce that (x�)���.

22 If a sequence tends to ��, must it be (monotonic) increasing?

23 Construct a definition for ‘(a
�
)��� as n� �’.

Check that your definition guarantees that the sequence defined by
a
�
	�n tends to ��.

Summary – the language of sequences

The symbol for a sequence, (a
�
), denotes the infinite list of numbers

a
�
, a

�
, a

�
, . . ., a

�
, . . .

in this order. n � N.
Definition

qn 4
A sequence (a

�
) is said to be increasing when

a
�
� a

���
for all n, and is said to be decreasing

when a
���

� a
�
for all n. Both increasing and

decreasing sequences are called monotonic.
Definition

qn 5
A sequence (a

�
) is said to be bounded above

when there is a number U such that a
�
�U for

all n.
A sequence (a

�
) is said to be bounded below

when there is a number L such that L � a
�
for

all n.
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A sequence which is bounded above and
bounded below is said to be bounded.

Definition
qn 8

A sequence (a
��
) is called a subsequence of (a

�
), if

n
�
� n

�
whenever i� j.

Theorem
qn 16

Every sequence has a monotonic subsequence.

Definition
qn 18

A sequence (a
�
) is said to tend to infinity if and

only if for any number C, there is an N, such
that n�N� a

�
�C. This is written (a

�
)� ��

as n��.
Property of Archimedean order

Given a number, there is an integer which is
greater. Equivalently, the positive integers are
not bounded above.

Theorem For every real number A, there is a unique
integer [A] such that [A]�A� [A]� 1.

Null sequences

Even to the untutored eye, the sequence

1, �
�
, �
�
, �


, . . ., �

�
, . . .

will be seen to ‘tend to 0’. We work towards a precise definition of this
phrase and its synonym ‘converges to 0’.

24 (a) Name some lower bounds for the sequence (�
�
).

Are all possible lower bounds negative?
(b) Name some upper bounds for the sequence (�

�
).

Are all possible upper bounds positive?
Are all positive numbers upper bounds for the sequence?
Is each positive number eventually an upper bound for the
sequence?

It seems natural to say that a sequence like �
�
, �
�
, �


, 

�
, . . ., �

���
, . . .

tends to 1, or that a sequence like �
�
, �
�
, �
�
, 

�
, . . ., �

����
, . . . tends to �

�
; the

first from below, the second from above. In both cases, the limit is not
reached. The ‘one-sidedness’ of the terms and the non-reaching of the
limit are part of a common-sense notion of ‘tends to’. The examples of
convergence explored during the eighteenth century normally had both
these properties. But in order to reach a good definition of convergence
today, our attention will be drawn to bounds and to nearness, and with
this shift of attention neither the reaching of a limit, nor an oscillation
about a limit, is of concern.
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25 Answer the questions of qn 24 in relation to the two sequences

1, 0, �
�
, 0, �

�
, 0, �



, 0, . . ., �

�
, 0, . . .

and

0, 0, 0, 0, . . ., 0, . . ..

The similarity of answers in qns 24 and 25 will make us accept the
sequences in qn 25 as ‘tending to 0’.

26 Exhibit the inadequacy of the following attempts (a)—(e) to define a
null sequence, that is, a sequence which tends to 0, by reference to
the succeeding set of sequences (i)—(v), none of which is null.

(a) A sequence in which each term is strictly less than its
predecessor.

(b) A sequence in which each term is strictly less than its
predecessor while remaining positive.

(c) A sequence in which, for sufficiently large n, each term is less
than some small positive number.

(d) A sequence in which, for sufficiently large n, the absolute
value of each term is less than some small positive number.

(e) A sequence with arbitrarily small terms.

(i) 2, 1, 0, �1, �2, �3, �4, . . ., �n, . . .
(ii) 2, �

�
, 

�
, �


, �
�
, . . ., 
����

�
, . . .

(iii) 2, 1, 0, �0.1, �0.1, �0.1, . . ., �0.1, . . .
(iv) 2, 1, 0, �0.1, 0.01, �0.001, 0.01, �0.001, . . ., 0.01, �0.001, . . .
(v) 1, �

�
, 1, �



, 1, �

�
, . . .

27 Examine the sequence

�1, �
�
, ��

�
, �


, ��

�
, . . ., (�1)�/n, . . .

(i) Beyond what stage in the sequence are the remaining terms
between �0.1 and 0.1?

(ii) Beyond what stage in the sequence are the remaining terms
between �0.01 and 0.01?

(iii) Beyond what stage in the sequence are the remaining terms
between �0.001 and 0.001?

(iv) Beyond what stage in the sequence are the remaining terms
between �
 and 
, where 
 is a given positive number? The
choice of 
, the Greek e, here, is to stand for ‘error’, where the
terms of the sequence are thought of as successive attempts to
hit the target 0.
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A sequence (a
�
) is said to be a null sequence, or to tend to 0, or

converge to 0, when,

for any positive number 
, however small, there is a stage in the
sequence beyond which the remaining terms of the sequence are
between �
 and 
;

or, equivalently, for any given positive 
,

n

an

0

ε

ε


 is eventually an upper bound for the sequence and �
 is
eventually a lower bound for the sequence:

or, equivalently,

all but a finite number of terms of the sequence lie between �
, or
satisfy � a

�
�� 
.

These conditions must hold for every possible choice of 
. So, to be
called a null sequence, the sequence must satisfy an infinity of
conditions.

    

Formally we write (an)� 0 as n ���� if and only if, given ��� 0,
there is an N such that n �� N �� � an �� �.

This definition could also have been given by saying that the
subsequence of all terms after a

�
is bounded by �
. If a sequence is

null, there are many acceptable Ns for each 
.

28 For each of the sequences of qn 26, prove that it is not null by
naming an 
 for which no related N exists. What about the
constant sequence defined by a

�
	 1? See Fig. 3.28

29 Prove that the sequence (1/n) is a null sequence. Use the
Archimedean order property for the proof.
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n

an

0

ε

ε

N N Nor or

Fig 3.28

30 Prove that the sequence (1/�n) is a null sequence.

31 If (a
�
)���, prove that (1/a

�
) is a null sequence.

If (a
�
) is a null sequence and a

�
� 0 for all n, prove that

(1/a
�
)���.

Give an example to show that it is possible to have a null sequence
(a

�
) without having (1/a

�
)���.

32 The scalar rule for null sequences
Let (a

�
) be a null sequence and c a constant number.

Prove that (c · a
�
) is a null sequence.

Consider the cases c� 0 and c	 0, in turn.
Deduce that (10/�n) is a null sequence.

33 The absolute value rule for null sequences

(a) Let (a
�
) be a null sequence. Prove that ( � a

�
� ) is a null

sequence.
(b) Conversely, let ( � a

�
� ) be a null sequence. Prove that (a

�
) is a

null sequence.

34 A squeeze rule or sandwich theorem for null sequences I
Let (a

�
) be a null sequence, and 0� b

�
� a

�
, for all n. Prove that

(b
�
) is a null sequence.

35 Prove that each of the following sequences is null:

(i) (1/(n� 1)), (ii) (10/(n� 1)), (iii) (20/(7n� 3)),
(iv) (1/(n�� 1)), (v) (�(n� 1)��n), (vi) ((sin n)/n),
(vii) (sin n�), (viii) (sin(n!� · c)), where c is a rational number,
(ix) (a

�
) where a

����
	 1/(2n� 1) and a

��
	 1/n.

Standard properties of the sine function should be used: they will
be proved in chapter 11.
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36 (a) Must every subsequence of a null sequence be null? (The
answer here gives the subsequence rule for null sequences)

(b) Check the converse. If a sequence has a subsequence which is
null, must the original sequence have been null?

(c) The shift rule for null sequences
For some fixed positive integer k, the sequence (a

���
) is null.

Prove that (a
�
) is null. The sequence (a

���
) is a special kind of

subsequence of (a
�
) for which the converse of the result in (a)

is valid. The result may also be expressed by saying that a
sequence which is eventually null is a null sequence.

(d) A squeeze rule for null sequences, with a shift I
Let (a

�
) be a null sequence, and 0� b

�
� a

�
, for all n� k.

Prove that (b
�
) is a null sequence.

37 Prove that each of the following sequences is null by building on
qn 36:

(i) (1/(2n� 1)), (ii) (1/(2n�� 1)),
(iii) (a

�
), where a

�
	 n for n� 10, and a

�
	 1/n for n� 10,

(iv) (1/(3n� 100)).

38 (i) If a constant sequence (c) is a null sequence, what can be said
about c?

(ii) If two numbers a and b have the property that � a� b �� 1/n
for all positive n, what can be said about the numbers a and
b?

39 A particularly important family of null sequences is formed by
geometric progressions. Suppose 0�x� 1.

(a) Prove that 1� 1/x, using chapter 2 qn 23, and let
1/x	 1� y, so y� 0.

(b) Show that (1/x)� � 1� ny, using Bernoulli’s inequality,
chapter 2 qn 29.

(c) Prove that 0�x� � 1/(yn� 1).
(d) Use 1/(yn� 1)� (1/y)(1/n), the scalar rule and the squeeze rule

to prove that (x�) is a null sequence.
(e) Prove that for any constant c, (c ·x�) is a null sequence.

40 (a) Use a calculator or a computer to evaluate terms of the
sequence (n�/2�).
Calculate the values for n	 1, 2, 5, 10, 20, 50.
Would you conjecture that the sequence is null?

(b) Let a
�
	 n�/2�. Verify that

a
���
a
�

	�
�
(1� �

�
)�.
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(c) Find an integer k, such that if n� k, then
a
���
a
�

� �


.

(d) By considering that a
���

� �


a
�
and that a

���
� �



a
���

, etc.,
prove that a

���
� (�



)�a

�
.

(e) Why is ((�


)�a

�
) a null sequence? You have chosen k in part (c)

and it remains fixed.
(f ) Use the squeeze rule (qn 36(d)) to show that (n�/2�) is a null

sequence.
(g) What numbers might have been used in place of �



in part (c)

(with perhaps a different k) which would still have led to a
proof that the sequence was null?

41 Use the method of qn 40 to establish that the following sequences
are null:

(i) (n
/2�), (ii) (2�/n!),
(iii) (n!/n�), using qn 2.45,(iv) (n�(0.9)�).

42 Use the absolute value rule (qn 33) to extend qn 39 and establish
that (c ·x�) is a null sequence when �1�x� 1.

43 The product rule for null sequences
Let both (a

�
) and (b

�
) be null sequences, and suppose 
� 0 is given.

(i) Must there be an N� such that � a
�
� � 
 when n�N�?

(ii) Must there be an N
 such that � b
�
�� 1 when n�N
?

(iii) Can you find an N such that when n�N, then both n�N�
and n�N
?

(iv) If n�N, must �a
�
b
�
�� 
?

You have proved that the termwise product (a
�
b
�
) of two null

sequences is null.

(v) If the sequence (c
�
) is also null, what about (a

�
b
�
c
�
)? And the

termwise product of k null sequences?

44 The sum rule for null sequences
Let both (a

�
) and (b

�
) be null sequences, and suppose 
� 0 is given.

(i) Must there be an N� such that � a
�
� � 
/2 when n�N�?

(ii) Must there be an N
 such that � b
�
�� 
/2 when n�N
?

(iii) Is there an N such that when n�N, then both n�N� and
n�N
?

(iv) If n�N, must �a
�
� b

�
�� 
? Use the triangle inequality (qn

2.61).

You have proved that the termwise sum (a
�
� b

�
) of two null

sequences is null.
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(v) If the sequence (c
�
) is also null, what about (a

�
� b

�
� c

�
)? And

the termwise sum of k null sequences?

45 Let both (a
�
) and (b

�
) be null sequences. Show that (c · a

�
� d · b

�
) is

a null sequence, where c and d are constants. Use the scalar rule
and the sum rule.

The difference rule
By choosing suitable values for c and d, show that (a

�
� b

�
) is a null

sequence.

46 (i) A squeeze rule or sandwich theorem for null sequences II
Let both (a

�
) and (c

�
) be null sequences, and a

�
� b

�
� c

�
, for

all n.

(a) Say why (c
�
� a

�
) is a null sequence.

(b) Say why (b
�
� a

�
) is a null sequence.

(c) Finally say why (b
�
) is a null sequence.

(ii) The squeeze rule with a shift II
Let both (a

�
) and (c

�
) be null sequences, and a

�
� b

�
� c

�
, for

n� k. Say why (b
�
) must be a null sequence.

47 Let A
�
	 a

�
� a

�
� . . .� a

�
.

Give an example of a sequence (a
�
) which is not null, but for which

the sequence (A
�
/n) is null.

Summary – null sequences

Definition A sequence (a
�
) is said to tend to zero or to be a

null sequence, if and only if, given any 
� 0,
there exists an N such that n�N� � a

�
� � 
.

This is expressed symbolically by writing
(a

�
)� 0 as n��.

Theorem (1/n) is a null sequence.
qn 29

Theorem (x�) is a null sequence, when �1�x� 1.
qns 39, 42

The scalar rule for null sequences
qn 32 If (a

�
) is a null sequence, then (c · a

�
) is a null

sequence.
The absolute value rule for null sequences

qn 33 (a
�
) is a null sequence� ( � a

�
� ) is a null

sequence.
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The subsequence rule for null sequences
qn 36(a) Every subsequence of a null sequence is null.

The shift rule for null sequences
qn 36(c) If for some fixed positive integer k, (a

���
) is a

null sequence, then (a
�
) is a null sequence.

If (an) and (bn) are null sequences, then
The sum rule for null sequences qn 44 (i) (a

�
� b

�
) is a null sequence;

The difference rule for null sequences
qn 45 (ii) (a

�
� b

�
) is a null sequence;

qn 45 (iii) (c · a
�
� d · b

�
) is a null

sequence;
The product rule for null sequences

qn 43 (iv) (a
�
b
�
) is a null sequence;

The squeeze rule for null sequences
qn 46 (v) when a

�
� c

�
� b

�
,

eventually, (c
�
) is a null

sequence.

Convergent sequences and their limits

48 Examine the terms of the sequence given by

a
�
	

n

n� 1
.

To what limit do you think this sequence tends?
What can you say about the sequence (a

�
� 1)?

Up to this point we have avoided the term ‘limit’ because in
non-mathematical usage (e.g. a speed limit) it is synonymous with
‘bound’. However, for mathematicians, bounds need not be approached,
whereas limits are numbers to which the terms of sequences and the
values of functions get close.

   :   

 

We will say that the sequence (an) tends to the limit a, or converges
to a, if and only if (an � a) is a null sequence.

This is expressed symbolically by writing

either (a
�
)� a as n�� or lim

���

a
�
	 a.

We read each of the arrows here as tends to.
A sequence of numbers with a number as limit is said to be convergent.
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49 Prove

(i) (n/(2n� 1))� �
�
;

(ii) ((2n�� 1)/(n�� 1))� 2.

50 The sequence ((�1)�), for example, does not have two limits, �1
and �1. The definition of a limit rules out ambiguity. This is quite
easy to prove. Suppose (a

�
) is a sequence and both (a

�
)� a and

(a
�
)� b. By definition (a

�
� a) is a null sequence and (a

�
� b) is a

null sequence. Now use the difference rule (qn 45) to show that the
constant sequence (b� a) is a null sequence and deduce that a	 b
(qn 38). In fact, the sequence ((�1)�) is not convergent.

51 Look back to qn 19 and the discussion preceding it, for the
definition of [x]. Write down the first four terms of the sequence
([10�a]/10�)

(i) when a	 6�


, (ii) when a	�

�
, (iii) when a	�2.

Prove that, for any a,

0� a�
[10�a]

10�
�

1

10�
.

Deduce that for any number a there is a sequence of rational
numbers tending to it.

This question shows both the power and the limitation of decimal
expressions. Each of the terms of the sequence ([10�a]/10�) is a
terminating decimal and if the sequence is eventually constant, then the
number a is a terminating decimal. Terminating decimals provide an
excellent way of approximating to the points of a number line, but
there are many points on a number line which may only be pinpointed
as the limit of a sequence of terminating decimals and not by a single
terminating decimal. An infinite decimal is the limit of a sequence of
terminating decimals, presuming that sequence converges. The infinite
decimal 1.4142 . . . denotes the limit of the sequence 1, 1.4, 1.41, 1.414, . . .
and this is what is meant by writing �2	 1.4142 . . .. The sequence
determines a unique number — the limit of the sequence.

Many of the theorems we have established for null sequences can
be extended to give theorems about convergent sequences whatever
their limits.

52 The shift rule
Use the shift rule for null sequences (qn 36(c)) to prove that if
(a

���
)� a for some fixed positive integer k, then (a

�
)� a. This result

may also be described by saying that a sequence which eventually
converges to a, converges to a.
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53 Let (a
�
) be a sequence.

(i) We know that a
�
	 0 for n� 10�, what do you think the limit

is?
(ii) We know that a

�
	 0 for n� 10�, and a

�
	 1 for

10�� n� 10�, what do you think the limit is?
(iii) The sequence is given by a

�
	 0 for n� 10�, a

�
	 1 for

10�� n� 10�, and a
�
	 2 for 10� � n. What is the limit?

54 Let (a
�
)� a and (b

�
)� b.

(i) The scalar rule
Use the scalar rule for null sequences (qn 32) to show that
(c · a

�
)� c · a.

(ii) The subsequence rule
Use the subsequence rule for null sequences (qn 36(a)) to show
that every subsequence of (a

�
) converges to a.

(iii) The sum rule
Use the sum rule for null sequences (qn 44) to show that
(a

�
� b

�
)� a� b.

(iv) Use the scalar rule and sum rule to show that
(c · a

�
� d · b

�
)� c · a� d · b.

(v) The difference rule
Apply (iv) to show that (a

�
� b

�
)� a� b.

(vi) The product rule
Use the scalar rule, the sum rule and the product rule for null
sequences (qn 43) and the equation

a
�
b
�
� ab	 (a

�
� a)(b

�
� b)� a(b

�
� b)� b(a

�
� a)

to show that (a
�
b
�
)� ab.

(vii) The absolute value rule
Use the absolute value rule for null sequences (qn 33), the
reverse triangle inequality (qn 2.63) and the squeeze rule for
null sequences (qn 34) to show that ( � a

�
� )� � a � .

(viii) The squeeze rule or sandwich theorem
When a

�
� c

�
� b

�
, for n� k, and a	 b, use the squeeze rule

for null sequences (qn 46(ii)) to show that (c
�
)� a.

55 (i) Extend the sum rule (qn 54(iii)) to a sum of three convergent
sequences and then to a sum of k convergent sequences.

(ii) Extend the product rule (qn 54(vi)) to a product of three
convergent sequences, and then to a product of k convergent
sequences.

(iii) If (a
�
)� a, what is the limit of the sequence

(1� 2a
�
� 3a�

�
� 4a�

�
� 5a


�
)?
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It was mentioned in chapter 2 that many square roots, cube roots, etc.,
of integers are not rational numbers. So if we only knew about rational
numbers, the square root of 2 ‘would not exist’. Roots of numbers are
problematic. For example, �(�1) ‘does not exist’ if we are thinking
only of real numbers, as we are in this book. In chapter 4 we will meet
this issue head-on and show that nth roots of positive numbers always
exist and are unique, something which you probably always took for
granted. In the mean time you should proceed as if this is not a
problem.

56 Use a calculator to explore the sequences ( ��2), ( ��10) and ( ��1000).
Repeated use of the square root button gives a subsequence in each
case.

57 (a) Let 1� b. Use qn 2.20 to show that 1� ��b.
(b) Let 1� a

�
	 ��b. Use Bernoulli’s inequality (qn 2.29) to show

that 1� na
�
� b.

(c) Prove that (a
�
) is a null sequence.

(d) Deduce that ( ��b)� 1 as n � �.

58 (a) Do you think the sequence ( ��(2�� 3�)) is convergent?
(b) Use a calculator to explore the sequence ( ��(2�� 3�)).
(c) Find the limit of the sequence ( ��(a�� b�)) when 0� a� b.

59 (a) For n� 2, check that ��n� 1. See qn 2.51.
(b) Let ��n	 1� a

�
. Use the binomial theorem to show

n�
n(n� 1)

2
(a

�
)�.

(c) Show that

a
�
��

2

n� 1
, and deduce that (a

�
) is a null sequence.

(d) Deduce that ( ��n)� 1.

   

We say (an) tends to the limit a, or converges to a, and write (an)� a
as n����
if and only if, given any ��� 0, there exists an N such that
n��N�� � an � a � �� �.

60 Show that the two definitions of convergence are equivalent.
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Boundedness of convergent sequences

61 For what values of L and U is the inequality L �x�U equivalent
to the inequality � x� a � � 
? Mark a, 
, L and U on a number
line.
For these values of L and U the interval �x � L � x�U� is called
an 
-neighbourhood of a.

62 Let (a
�
)� a. Prove that the sequence (a

�
) is eventually bounded

above by a� 1 and eventually bounded below by a� 1. (Hint.
Take 
	 1.) Illustrate this proof with a graph.
Deduce from qn 13 that every convergent sequence is bounded.
Give an example to show that a bounded sequence need not be
convergent.

63 Let (a
�
)� a, and a� 0. Identify a positive number which is

eventually a lower bound for the sequence (a
�
).

Quotients of convergent sequences

64 What is the relationship between the limits of the sequences
(2n/(n� 1)) and ((n� 1)/2n)?

65 The reciprocal rule for non-null sequences
Let (a

�
) be a sequence of non-zero terms with (a

�
)� a and a� 0.

We wish to show that (1/a
�
)� 1/a, and so we must examine

�
1

a
�

�
1

a �	
� a� a

�
�

� a
�
a �

	 �
1

a
�
� ·

�a� a
�
�

a
.

(a) How do you know that �
� a� a

�
�

a � is a null sequence?

2
a

1
a

2
3a

a
2

3a
2

1
x

a

y =

(b) As in qn 63, show that, eventually,

a

2
� a

�
�

3a

2
,
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and hence

2

3a
�

1

a
�

�
2

a
.

(c) Deduce that, eventually,

�
1

a
�

�
1

a ��
2

a
·
� a� a

�
�

a
.

(d) Now use (a), the scalar rule for null sequences (qn 32) and the
squeeze rule with a shift (qn 46(ii)) to prove that (1/a

�
)� 1/a.

66 Let (a
�
) be a sequence of non-zero terms with (a

�
)� a and a� 0.

Prove that (1/a
�
)� 1/a, by applying the result of qn 65 to the

sequence (�a
�
).

67 The quotient rule
Let (a

�
)� a, (b

�
)� b, and suppose that all of the b

�
and b are

non-zero. Prove that (a
�
/b

�
)� a/b.

68 Find the limits of the sequences with nth terms given here, stating
which rules you are using.

(i)
1� 1/n

2� 1/n
, (ii)

3n� 2

4n� 3
, (iii)

n�� 1

3n�� n
, (iv)

(�
�
)�� 1

(�
�
)�� 1

,

(v)
2� � 1

2� � 1
, (vi)

n�� n� � n� 1

3n
� 5
, (vii) (	n� 3)(	n� 1)

3	n� 5n
,

(viii)
a� � 1

a� � 1
, 0� a, (ix)

1� 2� . . .� n

n�
, (x) �	b, where 0� b� 1.

69 Let a
�
	 �(n� 8)��n, b

�
	�(n� �n)� �n and

c
�
	�(n� n/8)��n.

Show that a
�
� b

�
� c

�
when n� 64.

Find the limits of the sequences (a
�
), (b

�
) and (c

�
) if they exist.

(Hint. For positive numbers, x and y,
x� y	 (�x��y)(�x��y).

d’Alembert’s ratio test

70 Give examples of sequences (a
�
) of positive terms for which

�
a
���
a
�
�� �

�
.

You will find one example in qn 40. Are all the sequences which
you have found convergent? To what limit?

50 3 Sequences



By choosing 
 	�


for the sequence of ratios, show that the method

of qn 40 can be applied here to prove that any such sequence is
null.

0 l l+ εl ε 1

71 Let (a
�
) be a sequence of positive terms such that

�
a
���
a
�
�� l� 1.

Show that, for sufficiently large n, the sequence (a
�
) is squeezed

between 0 and an appropriately chosen null geometric progression.
Deduce that (a

�
) is a null sequence.

72 Let (a
�
) be a sequence of positive terms such that

�
a
���
a
�
�� l� 1.

Show that, for sufficiently large n, the terms of the sequence (a
�
) are

greater than the corresponding terms of an appropriately chosen
geometric progression, which from qn 21 tends to ��.
Deduce that (a

�
)���.

73 Give an example of a null sequence of positive terms (a
�
) for which

�
a
���
a
�
�� 1.

Also give an example of an increasing non-convergent sequence of
positive terms (a

�
) for which

�
a
���
a
�
�� 1.

This means that the condition that the ratio of successive terms
tend to 1 does not determine the convergence of the original
sequence one way or the other.

74 Let k be a given integer. Determine for what values of x the
sequences with nth terms

(i) n�x� and (ii)
x�

n!
are null.

Can the value of k affect the answer?
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Convergent sequences in closed intervals

a 0 a a a3 2 1

75 We investigate the question ‘Can a sequence of positive terms have
a negative limit?’
‘Obviously not,’ you think. Here is a more reasoned response.
Let (a

�
)� a, 0� a

�
and a� 0. Use the inequality 0� a

�
� a

�
� a to

prove that a	 0.
Deduce that, if (a

�
)� a and 0� a

�
, then necessarily 0� a.

76 The inequality rule
Let (a

�
)� a, (b

�
)� b and a

�
� b

�
for all n. By considering the

sequence (b
�
� a

�
), and using the difference rule, prove that a� b.

77 By considering the sequences defined by a
�
	 � 1/n and b

�
	 1/n,

show that even if a
�
� b

�
for all n, (a

�
)� a and (b

�
)� b does not

imply a� b. This gives a counter-example to the proposition that if
a
�
� b

�
for all n, (a

�
)� a and (b

�
)� b implies a� b.

78 The closed interval property
Let (a

�
)� a and A� a

�
�B for all n. Prove that A� a�B.

The reason for calling the interval �x �A�x�B� a closed interval
is that no convergent sequence in the interval can have a limit
which escapes from the interval.
Give an example to show that if (a

�
)� a and A� a

�
�B for all n,

it does not necessarily follow that A� a�B.
The interval �x �A�x�B� is called an open interval, partly
because a convergent sequence in the interval may have a limit
outside the interval.

79 Let (a
�
) be a sequence of positive terms such that a�

���
	 a

�
� 2,

and (a
�
)� a. Prove that a	 2. Use the sum rule (qn 54(iii)), the

product rule (qn 54(vi)) and the closed interval property.
(Optional) Prove that (a

�
) is monotonic.

80 Let (a
�
) be a monotonic increasing sequence with a convergent

subsequence (a
��
)�A.

?    ank

n

A

an
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(a) Show that a
��

�A for all n
�
, by contradiction, supposing that

A� a
��

	A� 
, for some positive integer k, and showing that
the subsequence (beyond the n

�
th term) could not then be

both monotonic increasing and convergent to A.
(b) Use the fact that every term of the sequence (a

�
) is followed

eventually by a term of the convergent subsequence to prove
that a

�
�A for all n.

(c) For any positive 
, use the convergence of the subsequence to
A to find a term of the subsequence between A� 
 and A.

(d) Name an N such that n�N� � a
�
�A �� 
, so that (a

�
)�A.

State the theorem you have proved through (a), (b), (c) and (d). State an
analogous theorem for monotonic decreasing sequences. Combine the
statements of these two theorems into a single theorem about the
convergence of monotonic sequences.

Intuition and convergence

81 An isosceles right-angled triangle is constructed with a given line
segment l as hypotenuse. It has perimeter p

�
and area A

�
.

Two isosceles right-angled triangles are constructed each with
hypotenuse on half of the line segment l, but with the two
hypotenuses occupying the whole of l. The two triangles, which
only overlap at one vertex, have combined perimeter p

�
and

combined area A
�
.
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This replacement of a triangle by two smaller triangles is repeated
indefinitely, so that at each stage of replacement there are 1, 2, 4, 8, . . .,
2�, . . . congruent triangles with hypotenuses filling the line segment l,
and at the nth stage, the combined perimeter of these triangles is p

�
and

their combined area is A
�
.

(a) What is the relation between p
�
and p

���
?

(b) What is the relation between A
�
and A

���
?

(c) What can you say about the two sequences (p
�
) and (A

�
)?

82 (Koch, 1904) An equilateral triangle is given with perimeter p
�
and

area A
�
. This is stage 1. Now an equivalent triangle is added to

each side on the outside of the original figure, at its points of
trisection

Stage 1

Stage 2

The result is a polygon with 12 sides, perimeter p
�
and area A

�
.

This is stage 2.
The same kind of extension is now made on each of the 12 sides of
this polygon, resulting in a further polygon with 48 sides, perimeter
p
�
and area A

�
. This is stage 3.
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Stage 3

Stage 4

This process is continued indefinitely.

(a) What is the number of sides of the nth polygon?
(b) Show that p

���
	


�
p
�
.

(c) Show that, in making the (n� 1)th polygon, each little
triangle being adjoined has area (�

�
)�A

�
.

(d) Show that A
���

	A
�
� (�

�
)(

�
)���A

�
.

(e) Prove (from chapter 1 qn 3(vi)) that

1�

�
� (


�
)�� . . .� (


�
)���	

(

�
)�� 1



�
� 1

.

(f ) Prove that (A
�
)� �

�
A

�
as n��.

(g) Prove that (p
�
)��� as n��.

83 The two big ideas of this chapter have been null sequences and
convergence. For each of these notions write down (a) some (varied)
examples, (b) some theorems and (c) some related ideas. Then look
back at the summaries to see what you left out, and whether you
wish to revise your opinion as to which ideas are the most
important.
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Summary – convergent sequences

Definition A sequence (a
�
) is said to tend to a limit a or to

be convergent, if any only if, given 
� 0, there
exists an N, such that n�N� � a

�
� a �� 
.

This is expressed symbolically by writing
(a

�
)� a as n��.

The subsequence rule
qn 54(ii) If (a

�
)� a then every subsequence of (a

�
)� a.

The shift rule
qn 52 If, for some fixed integer k, (a

���
)� a, then

(a
�
)� a.

The scalar rule
qn 54(i) If (a

�
)� a, then (c · a

�
)� c · a.

The absolute value rule
qn 54(vii) If (a

�
)� a, then ( � a

�
� )� � a � .

The reciprocal rule for non-null sequences
qns 64, 65 If (a

�
)� a, and a

�
, a� 0, then (1/a

�
)� 1/a.

Theorem
qn 62

Every convergent sequence is bounded.

The closed interval rule
qn 78 If (a

�
)� a and A� a

�
�B, then A� a�B.

If (an)� a and (bn)� b then
The sum rule

qn 54(iii) (i) (a
�
� b

�
)� a� b;

The difference rule
qn 54(v) (ii) (a

�
� b

�
)� a� b;

qn 54(iv) (iii) (c · a
�
� d · b

�
)� c · a� d · b;

The product rule
qn 54(vi) (iv) (a

�
b
�
)� ab;

The squeeze rule
qn 54(viii) (v) when a

�
� c

�
� b

�
, eventually, and a	 b,

(c
�
)� a;

The quotient rule
qn 67 (vi) when b

�
, b� 0, (a

�
/b

�
)� a/b;

The inequality rule
qn 76 (vii) when a

�
� b

�
, a� b.

Theorem
qn 51

Every real number is the limit of some sequence
of terminating decimals.

Theorem
qns 57, 68(x)

If 0� a, ( ��a)� 1.

Theorem
qn 59

( ��n)� 1.
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Historical note

The ‘Archimedean property’ appears in Euclid in the form of a
definition of ratio (Book V, Def. 4), and thus pre-dates Archimedes (250
B.C.). It was important to Euclid because it precluded comparing a
measurement of length with a measurement of area or a measurement
of area with a measurement of volume. There is an equivalent
proposition in Euclid Book X.1 that if a half or more of a quantity is
removed, then half or more of what is left, and so on, then after a finite
number of steps what remains is less than any predetermined quantity.
This proposition was used to great effect by Euclid in relation to the
area of a circle (Book XII.2) and by Archimedes in his calculations of
areas and volumes. It provided the classical way of establishing the
existence of a limit. The importance of the Archimedean property in
modern times dates from 1891, when G. Veronese recognised that it
eliminated constant infinitesimals. In Hilbert’s Foundations of Geometry
(1899) it is referred to as the ‘axiom of continuity’.

The 
 in our definition of limit is foreshadowed in Euclid X.1, and
also by Newton who wrote ‘Quantities, and the ratio of quantities,
which in any finite time converge continually to equality, and before the
end of that time approach nearer to each other than by any given
difference, become ultimately equal.’ (Principia, Book 1, Lemma 1, 1687).
During the eighteenth century a great deal of work was done on
particular sequences and series, and sophisticated methods for
approximating and finding limits were developed. D’Alembert had
studied the binomial expansion of (1�x)� when m is rational (1768)
and had established the boundedness of the series by comparison with
two geometric series when � x � � 1. Newton’s statement on limits was
refined by d’Alembert (1765) who wrote ‘One says that a quantity is the
limit of another quantity, if the second approaches the first closer than
any given quantity, however small.’ There are indications of how to
prove that the limit of a product is equal to the product of the limits in
d’Alembert and de la Chapelle (1789) and of how to prove that the limit
of a quotient is the quotient of the limits (without attention to the
possibility of a zero denominator) in L’Huilier (1795). But formal
proofs, as in this chapter, had to await a working definition of
convergence and this came in Cauchy’s Cours d’analyse (1821) in his
proof that (a

���
� a

�
)� k implies (a

�
/n)� k. ‘There exists an N such

that when n�N . . .’ and the abbreviation ‘for sufficiently large n’ are
both expressions which we owe to Cauchy. The suffix notation for
sequences stems from Lagrange (1759) who actually used superscripts
and not subscripts. The suffix notation proper is due to Lacroix (1800),
but it was in Cauchy’s hands that it became the powerful tool we know
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today. Most of the limits which were studied in the eighteenth century
were one-sided, as was mentioned in the section preceding qn 25, and
there was also a presumption (explicit in d’Alembert) that limits were
not to be reached.

The notation for absolute value was not available to Cauchy,
though he sometimes wrote �(x�) where we would write � x � . Where
absolute value was pertinent, early nineteenth century mathematicians
would declare that an inequality holds ‘without regard to sign’. The
symbolism of absolute value and the notion of neighbourhood were
introduced by K. Weierstrass in his lectures in 1859.

The symbol � was introduced by J. Wallis in 1655, but he
manipulated it like a number. The ‘lim’ notation was due to L’Huilier
in 1786, and mid-nineteenth-century mathematicians, including
Weierstrass, used expressions such as

lim
���

n� 	�.

This only became unacceptable with the greater precision about what is
and what is not a real number in the latter part of the nineteenth
century, and it was in 1905 that the Cambridge mathematician J. G.
Leathem proposed the use of ‘n��’. G. H. Hardy (1908) vehemently
exhorts his readers to forgo writing n	�, though even he allowed the
statement lim a

�
	�.

The language of bounds and boundedness, introduced by Pasch
(1882), was adopted at the beginning of the twentieth century. For most
of the nineteenth century a bound was called a limit (as in common
non-mathematical usage) and the boundedness of a set described by
saying that its elements were finite.

The symbol [x] for the integral part of x was used for certain
special cases by Dirichlet in 1849, and in the sense that we now use it
by F. Mertens in 1874. G. Peano wrote Ex for [x] in 1899 (E being the
first letter of entier, the word for whole number in French).

Both recurring (1657) and non-recurring (1693) infinite decimals
appear first in the work of J. Wallis.
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Answers and comments

1 n, 2n, 1/2�, � to n� 1 places of decimals, (�1)�, n/(n� 1).

4
(a) (b) (c) (d)

(i) � � � �
(ii) � � � �
(iii) � � � �
(iv) � � � �
(v) � � � �
(vi) � � � �
(vii) � � � �

5 (a) (b)
(i) � �
(ii) � �
(iii) � �
(iv) � �

6 (i) Yes, (�1/n); (ii) yes; (iii) no, (n); (iv) yes, always, a
�
.

Monotonic decreasing: (i) yes; (ii) yes (1/n); (iii) yes, always, a
�
; (iv) no,

(�n).

7 (i) Yes; (ii) yes, because if there were only a finite number, the greatest
would be an upper bound.

8 (i) A finite list, (ii) not in order, (iii) not in original sequence when n is
odd, (iv) not in original sequence when n	 1.

9 (i) 1, 4, 5, 8, 9, . . ., (ii) 2, 3, 6, 7, 10, . . ., (iii) 1, 3, 5, 7, 9, . . ., (iv) 2, 4, 6, 8,
10, . . ..

10 (i) (a) No. The n
�
form an increasing sequence. (b) No. The n

�
form a

strictly increasing sequence. (c) 5. (d) a
����

, an integer greater than
101 may also be used.

(ii) (n
�
) is strictly increasing, so i� j� n

�
� n

�
. But the sequence (a

�
)

is arbitrary, so the subsequence need not be increasing.

11 (i) Yes, see qn 4(iv); (ii) not for a constant sequence.

12 Yes, the bounds for the sequence are certainly bounds for any
subsequence.

13 (i) If the subsequence is bounded above by U and bounded below
by L, then the sequence has max(a

�
,U) as an upper bound and

min(a
�
,L) as a lower bound. ‘max’ is formally defined at qn 6.44.

(ii) As (i) with upper bound max(a
�
, a

�
,U), lower bound

min(a
�
, a

�
,L).
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(iii) As (i) with upper bound max(a
�
, a

�
, . . ., a

�
,U) and lower bound

min(a
�
, a

�
, . . ., a

�
,L).

14 (a) No. Take the sequence (a
�
) defined by a

��
	 1 and a

����
	 n, for

example. (b) (i) Yes, a
����

	 0, a
��

	 (� 2)�; (ii) no, (�2)�.

15 (i) �1, �1/3, �1/5, . . .; (ii) 0, 0; (iii) none.

16 (i) If the floor term a
	�

succeeds the floor term a
	�
, then by the

definition of a
	�
, a

	�
� a

	�
, and the subsequence (a

	�
) is

monotonic increasing.
(ii) Since no term after a



is a floor term, every term thereafter is

eventually succeeded by a lesser term, giving a strictly
decreasing subsequence.

(iii) Since there are no floor terms, every term is eventually
succeeded by a lesser term, again giving strictly decreasing
subsequence.

17 (i) Not monotonic; bounded below; all terms� 1.
(ii) Not monotonic; unbounded.
(iii) Not monotonic; bounded below; all terms� 1; all terms past

the 10th� 10; all terms past the 100th� 100.
(iv) Not monotonic; bounded; all terms� 10.

18 (i) 1�C; (ii) any C; (iv) 11�C.

19 (i) A� 1� [A]�A. (ii) (a) 0�x�N(x)� 1 which is impossible
when x is an integer. (b) x�M(x� 1)�x� 1, so not possible
when x is an integer. (c) Of course K(x)	 [x] is possible, and is
inevitable when x is not an integer, but when x is an integer we
may have x	K(x) or K(x� 1).

20 Take N�C�.

21 (a) Take N�C/y.

22 Although in the common-sense use of the word, a sequence which
tends to �� is ‘increasing’, qn 17 (iii) shows that such a sequence
need not be monotonic increasing, and therefore not, in the
mathematically precise sense, increasing.

23 (a
�
)��� when, given any number C, there exists an N such that

n�N� a
�
�C.

24 (a) Any negative number is a lower bound; also 0.
(b) Any positive number� 1 is an upper bound; any positive

number is eventually an upper bound.

25 First sequence: answers as in qn 24.
Second sequence: any positive number is an upper bound; any
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negative number is a lower bound. 0 is both.

26 (i) satisfies (a) and (c) but tends to ��.
(ii) satisfies (a) and (b) but tends to 1.
(iii) satisfies (c) and perhaps (d) but tends to �0.1 and so keeps its

distance from 0.
(iv) possibly satisfies (c) and (d) but keeps at least 0.001 away from

0.
(v) satisfies (e) but oscillates between 0 and 1.

27 (i) n� 10; (ii) n� 100; (iii) n� 1000; (iv) n� 1/
.

28 For qn 26 (i), any 
 will do. For qn 26 (ii) take 
 	 1 or less. For qn
26 (iii) take 
	 0.1 or less. For qn 26 (iv) take 
 	 0.01 or less. For
qn 26 (v) take 
	 1 or less.
For the constant sequence 1, 1, 1, take 
 	�

�
. For no term in this

sequence is � a
�
�� �

�
.

29 Given 
� 0, let N be an integer greater than 1/
 (which exists by
the property of Archimedean order). Then
n�N� n� 1/
� 1/n�
.

30 Given 
� 0, let N be an integer greater than 1/
� (which exists by
the property of Archimedean order). Then
n�N� n� 1/
�� 1/�n� 
.

31 Given 
� 0, there exists an N such that
n�N� a

�
� 1/
� 0� 1/a

�
�
.

For given C� 0, there exists N such that
n�N� � a

�
�� 1/C� 0� a

�
� 1/C�C� 1/a

�
, so (1/a

�
)���. In

general (a
�
)� 0 does not imply (1/a

�
)���. Put a

�
	 (�1)�/n, for

example.

32 Case (i), c� 0. Given 
� 0, choose N so that n�N� � a
�
�� 
/ � c � .

Then � c · a
�
�� 
.

Case (ii), c	 0. Given 
� 0, � c · a
�
� 	 0�
, for all n.

Use qn 30 and put c	 10.

33 Since � � a
�
� � 	 � a

�
� , the same N is sufficient for either sequence.

34 If � a
�
�� 
 and 0� b

�
� a

�
, then 0� b

�
�
, and so � b

�
�� 
. So

n�N� � a
�
�� 
� � b

�
�� 
.

35 (i) Use qn 29 and the squeeze rule (qn 34).
(ii) Use the scalar rule (qn 32) and part (i).
(iii) Show that 1/(7n� 3)� 1/7n. Then use qn 29, the scalar rule

(qn 32) and the squeeze rule (qn 34).
(iv) Show that 1/(n�� 1)� 1/n. Then use qn 29 and the squeeze

rule (qn 34).
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(v) nth term	
1

	n� 1�	n
�

1

2	n
. Use qn 30, the scalar rule

(qn 32) and the squeeze rule (qn 34).

(vi)

�
sin n

n ��
1

n
. Use qn 29, the squeeze rule (qn 34) and the

absolute value rule (qn 33).
(vii) All terms are 0.
(viii) If c	 p/q, where p and q are integers, q positive, then when

n� q, the terms are 0.
(ix) 0� a

�
� 2/n. Use qn 29, the scalar rule (qn 32) and the

squeeze rule (qn 34).

36 (a) Yes. If n�N� � a
�
� � 
, then n

�
�N� � a

��
�� 
.

(b) No. See qn 26(v).
(c) [n�N� � a

���
�� 
]� [n�N� k� � a

�
�� 
].

(d) (a
�
) null� (a

���
) null, by (a),

0� b
�
� a

�
for n� k� 0� b

���
� a

���
for all n.

So (b
���

) is a null sequence by the squeeze rule (qn 34), and
(b

�
) is a null sequence by (c).

37 (i) and (ii) are subsequences of (1/n). Use qn 36(a), the
subsequence rule.

(iii) for n� 10, terms� 1/n, use 36(d) with k	 10.
(iv) is a subsequence of (1/n) for n� 34. Use 36(a) to claim that

the subsequence is null and the shift rule (qn 36(c)) with
k	 34.

38 (i) � c �� 
 for every positive 
, so � c � 	 0 and c	 0.
(ii) A constant sequence with each term	 a� b would have to

be a null sequence by the squeeze rule, and therefore a	 b
from part (i).

39 (d) (1/n) is a null sequence by qn 29, so (1/yn) is a null sequence
by the scalar rule (qn 32), so (1/(yn� 1)) is a null sequence by
the squeeze rule (qn 34) and finally (x�) is a null sequence by
the squeeze rule (qn 34).

(e) Use the scalar rule (qn 32).

40 (c) k� 5.
(d) For example, a

���
� (�



)�a

�
.

(e) From qn 39(e).
(f ) From (d) and the squeeze rule (qn 34) (a

���
) is a null

sequence, so from the shift rule (qn 36(c)) (a
�
) is a null

sequence.
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(g) In order to appeal to qn 39, the number used must be �1.
Because of part (b) the number must be greater than �

�
. If we

want to use �
�
, then k� 11.

41 (i) a
���

/a
�
	 �

�
(1� 1/n)
� �



, when n� 10.

(ii) a
���

/a
�
	 2/(n� 1)� �



, when n� 2.

(iii) a
���

/a
�
	 1/(1� 1/n)�� �

�
, for all n� 1.

(iv) a
���

/a
�
	 (0.9)(1� 1/n)� � 0.95, when n� 55.

42 When �1�x� 1, ( � x � �) is a null sequence by qn 39(d). Now
�x� �	 � x � �, so ( � x� � ) is a null sequence, and using the absolute
value rule, (qn 33), (x�) is also a null sequence.

43 (iii) Take N	max(N�,N
).
(iv) � a

�
b
�
� 	 � a

�
� · � b

�
�� � a

�
� � 
, from qns 2.58 and 2.11.

(v) a
�
b
�
c
�
is the product of a

�
b
�
and c

�
. Product of k terms by

induction.

44 (iii) Take N	max(N�,N
).
(iv) � a

�
� b

�
� � � a

�
�� � b

�
�� �

�

��

�

 	 
, from qns 2.61 and 2.10.

(v) a
�
� b

�
� c

�
is the sum of a

�
� b

�
and c

�
. Sum of k terms by

induction.

45 (c · a
�
) and (d · b

�
) are both null sequences from the scalar rule, qn

32. Their sum is a null sequence from the sum rule, qn 44.
The difference rule follows by putting c	 1 and d	� 1.

46 (i) (a) From the difference rule (qn 45).
(b) 0� b

�
� a

�
� c

�
� a

�
and the squeeze rule, qn 34.

(c) b
�
	 (b

�
� a

�
)� a

�
. Now use the sum rule, qn 44.

(ii) (a
���

) and (c
���

) are null sequences by the subsequence rule,
qn 36(a).
So (b

���
) is a null sequence from part (i). Now (b

�
) is a null

sequence by the shift rule, qn 36(c).

47 For example a
�
	 (�1)�.

48 Terms tend to 1. (a
�
� 1) is null.

49 (i) n/(2n� 1)��
�
	 1/2(2n� 1), so (a

�
��

�
) is a subsequence of

(1/n).
(ii) (2n�� 1)/(n�� 1)� 2	 �1/(n�� 1), so (a

�
� 2) is a scalar

multiple of a subsequence of (1/n).

50 The constant sequence (b� a) is null. Now b� a	 0, for if not

	�

�
� b� a � gives a contradiction.

51 (i) 6.2, 6.25, 6.25, 6.25.
(ii) 0.3, 0.33, 0.333, 0.3333.
(iii) 1.4, 1.41, 1.414, 1.4142.
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[10�a]� 10�a� [10�a]� 1 gives the inequality.
(1/10�) is null by qn 39, so ([10�a]/10�)� a by the squeeze rule,
qn 34.
Every term of ([10�a]/10�) is rational.

52 (a
���

)� a� (a
���

� a) is null (by definition)� (a
�
� a) is null (by

the shift rule, qn 36(c))� (a
�
)� a (by definition).

53 (i) and (ii) give no basis for a guess.
(iii) With k	 10�, (a

���
� 2) is null, so (a

�
� 2) is null by the shift

rule, and (a
�
)� 2.

54 (i) (a
�
)� a� (a

�
� a) null� (c · (a

�
� a)) null

� (c · a
�
� c · a) null� (c · a

�
)� c · a.

(ii) (a
�
)� a� (a

�
� a) null� every subsequence of (a

�
� a) is null,

by the subsequence rule, qn 36(a)� every subsequence of
(a

�
)� a.

(v) Put c	 1 and d	�1 in the linear rule.
(vi) (a(b

�
� b)) and (b(a

�
� a)) are both null sequences by the scalar

rule (qn 32), and ((a
�
� a)(b

�
� b)) is a null sequence by the

product rule (qn 43). Now use the sum rule (qn 44).
(vii) (a

�
� a) null� ( � a

�
� a � ) null, by the absolute value rule (qn

33).
Now 0� � � a

�
�� � a � �� � a

�
� a � from qn 2.63, and so by the

squeeze rule (qn 34), ( � �a
�
�� � a � � ) is null, and by the

absolute value rule (qn 33), ( � a
�
�� � a � ) is null, so ( � a

�
� )� � a � .

(viii) a
�
� c

�
� b

�
� a

�
� a� c

�
� a� b

�
� a. Now the squeeze rule

with a shift (qn 46(ii)) gives (c
�
)� a.

55 (i) a
�
� b

�
� c

�
is the sum of a

�
� b

�
and c

�
. The sum of k terms

by induction.
(ii) a

�
b
�
c
�
is the product of a

�
b
�
and c

�
. The product of k terms by

induction.
(iii) By repeated use the product rule, the scalar rule and the sum

rule, the limit is 1� 2a� 3a�� 4a� � 5a
.

56 Each tends to 1.

57 (c) 0� a
�
� (b� 1)/n. Now use the scalar rule (qn 32) and the

squeeze rule (qn 34).

58 (c) ��(a�� b�)	 b · ��((a/b)�� 1), so
b� ��(a�� b�)� b · ��(a/b� 1)� b · ��2. Now use qn 57, the
scalar rule (qn 32) and the squeeze rule (qn 54(viii)).

59 (b) For n� 2, the third term in the expansion of (1� a
�
)� is

�
�
n(n� 1)(a

�
)�.

(c) For n� 2, (1/�(n� 1)) is a subsequence of a null sequence by
qn 30. So (a

�
) is null by the scalar rule and the squeeze rule.
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60 (a
�
� a) is a null sequence� given 
� 0, there exists an N such that

n�N� � a
�
� a � � 
.

61 L 	 a� 
, U	 a� 
.

62 From the definition there exists an N such that
n�N� � a

�
� a � � 1� a� 1� a

�
� a� 1. So every convergent

sequence is eventually bounded. ((�1)�) is bounded but not
convergent.

63 �
�
a, by taking 
	�

�
a.

64 2 and �
�
are reciprocal.

65 (a) (a
�
� a) is a null sequence, given. So ( � a

�
� a � ) is a null

sequence by the absolute value rule (qn 33). Then ( � a
�
� a � /a)

is a null sequence by the scalar rule (qn 32), since a� 0.
(b) The first pair of inequalities comes from taking 
	 �

�
a in the

standard definition of (a
�
)� a, the second from reciprocating

as in 2.23.
(c) Apply the second inequality in (b) to the equation at the head

of the question.

66 If (a
�
) is a sequence of non-zero terms with (a

�
)� a, and a� 0, then

(�a
�
) is a sequence of non-zero terms with (�a

�
)��a by the

scalar rule (qn 54(i)), and 0��a. So by qn 65, (�1/a
�
)� �1/a,

and by the scalar rule (qn 54(i)), (1/a
�
)� 1/a.

67 Use the reciprocal rule (qns 65, 66) and the product rule (qn 54(vi)).

68 In parts (i) to (ix) the form of the expression for the nth term is
adjusted until the quotient rule can be applied.

(i) �
�
.

(ii) nth term	
3� 2/n

4� 3/n
, limit �



.

(iii) nth term	
1� 1/n�

3� 3/n
, limit �

�
.

(iv) Limit �1.
(v) Limit 1.
(vi) Limit 0, divide top and bottom by n
.
(vii) Limit ��

�
.

(viii) Limit �1 when a� 1; limit 0 when a	 1, limit 1 when 1� a.
(ix) Limit �

�
, use 1.3(i).

(x) nth term	 1/ ��(1/b), limit 1, by the reciprocal rule.

69 n� 64� 8��n� n/8� a
�
� b

�
� c

�
. (a

�
)� 0 like qn 35 (v).

b
�
	 1/(�(1� 1/�n)� 1), so (b

�
)� �

�
. c

�
	�n(��

�
� 1), so

(c
�
)���.
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70 (n�/2�) for any positive integer k. All null.
Take 
	�



, then for sufficiently large n, a

���
/a

�
� �



.

71 Take 
	�
�
(1� l), then 0� a

���
� (�

�
(1� l))�a

�
.

0� l� 1� 0� �
�
(1� l)� 1, so qn 39 can be applied here.

72 Take 
	�
�
(l� 1), then (�

�
(1� l))�a

�
� a

���
. 1� l� 1� �

�
(1� l).

73 (1/n). (n).

74 The sequences are null if and only if the sequences of absolute
values are null.

(i) null when � x � � 1, or when x	 1 and k� 0.
(ii) null for all values of x.

75 (a
�
� a) is a null sequence, so by the squeeze rule (qn 34), (a

�
) is

null, so a	 0. Thus for a sequence of non-negative terms, a
negative limit is impossible.

76 By the difference rule (qn 53(v)), (b
�
� a

�
) has limit b� a. But

(b
�
� a

�
) is a sequence of non-negative terms, so b� a� 0.

78 Since 0� a
�
�A, 0� a�A, from qn 75.

Since 0�B� a
�
, 0�B� a, from qn 75. 0� 1/n� 2.

79 a�
���

� a�
���

	 (a
���

� 2)� (a
�
� 2)� (a

���
� a

���
)(a

���
� a

���
)	

a
���

� a
�
. Since the terms are positive, a

���
� a

���
has the same

sign as a
���

� a
�
.

80 (a) If A� a
��

	A� 
, then the monotonic increasing
subsequence gives n

�
� n

�
�A� 
� a

��
� 
 � a

��
�A, while

convergence to A gives � a
��

�A � � 
 for sufficiently large n
�
.

(c) Convergence to A implies that � a
��

�A �� 
 for sufficiently
large n

�
, or A� 
� a

��
�A� 
, so from (a) A� 
� a

��
�A.

(d) Take N as a sufficiently large n
�
in (c). Then claim monotonic

increasing and (b).

Theorem. If a monotonic increasing sequence has a subsequence
converging to A, then the sequence tends to A.
If (a

�
) is monotonic decreasing with a subsequence convergent to A,

then (�a
�
) is monotonic increasing with a subsequence converging

to �A. By the theorem we have proved, (�a
�
)��A, and so by

the scalar rule, (a
�
)�A. The overall theorem is that if a monotonic

sequence has a convergent subsequence, then the whole sequence is
convergent to the same limit.

81 (a) p
���

	 p
�
.

(b) A
���

	 �
�
A

�
.

(c) (p
�
) is constant, (A

�
) is null.
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82 (a) 3 · 4���.
(d) from (a) and (c).
(e) note that the limit of the right-hand side as n� � is �

�
.

(f ) A
���

	A
�
��

�
A

�
(1�


�
� . . .� (


�
)���).

(g) from (b) and qn 21.
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4

Completeness
What the rational numbers lack

Preliminary reading: Hemmings and Tahta, Niven, Burn (1990),
Gardiner part II, Lieber, Yarnelle, Zippin.
Concurrent reading: Baylis and Haggarty, Wheeler.
Further reading: Armitage and Griffiths, part II, ch. 1, Cohen and
Ehrlich chs 4 and 5, Artmann chs 1 to 3.

The first sixteen questions of this chapter are concerned with integers
and their quotients.

The Fundamental Theorem of Arithmetic

2 prime 21 	 3.7 41 prime 61 prime 81 	 3

3 prime 22 	 2 · 11 42 	 2 · 3 · 7 62 	 2 · 31 82 	 2 · 41
4 	 2� 23 prime 43 prime 63 	 3� · 7 83 prime
5 prime 24 	 2� · 3 44 	 2� · 11 64 	 2� 84 	 2� · 3 · 7
6 	 2 · 3 25 	 5� 45 	 3� · 5 65 	 5 · 13 85 	 5 · 17
7 prime 26 	 2 · 13 46 	 2 · 23 66 	 2 · 3 · 11 86 	 2 · 43
8 	 2� 27 	 3� 47 prime 67 prime 87 	 3 · 29
9 	 3� 28 	 2� · 7 48 	 2
 · 3 68 	 2� · 17 88 	 2� · 11

10 	 2 · 5 29 prime 49 	 7� 69 	 3 · 23 89 prime
11 prime 30 	 2 · 3 · 5 50 	 2 · 5� 70 	 2 · 5 · 7 90 	 2 · 3� · 5
12 	 2� · 3 31 prime 51 	 3 · 17 71 prime 91 	 7 · 13
13 prime 32 	 2� 52 	 2� · 13 72 	 2� · 3� 92 	 2� · 23
14 	 2 · 7 33 	 3 · 11 53 prime 73 prime 93 	 3 · 31
15 	 3 · 5 34 	 2 · 17 54 	 2 · 3� 74 	 2 · 37 94 	 2 · 47
16 	 2
 35 	 5 · 7 55 	 5 · 11 75 	 3 · 5� 95 	 5 · 19
17 prime 36 	 2� · 3� 56 	 2� · 7 76 	 2� · 19 96 	 2� · 3
18 	 2 · 3� 37 prime 57 	 3 · 19 77 	 7 · 11 97 prime
19 prime 38 	 2 · 19 58 	 2 · 29 78 	 2 · 3 · 13 98 	 2 · 7�
20 	 2� · 5 39 	 3 · 13 59 prime 79 prime 99 	 3� · 11

40 	 2� · 5 60 	 2� · 3 · 5 80 	 2
 · 5 100 	 2� · 5�
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1 Find non-negative integers a, b, c, d, e, f such that
200 772	2� · 3
 · 5� · 7� · 11� · 13	.

The Fundamental Theorem of Arithmetic states that each natural
number greater than 1 may be expressed in a unique way as a product
of prime numbers. The proof of this theorem can be found in most
undergraduate textbooks on number theory. See for example the first
chapter of Burn (1997) or Hardy and Wright. For the simple
enunciation of this theorem it is important that the number 1 is not
called prime.

2 Find integers a, b, c, d, e, f such that
2775/999 999	 2� · 3
 · 5� · 7� · 11� · 13	.

3 Use the Fundamental Theorem of Arithmetic to enunciate a unique
factorisation theorem for positive rational numbers. (The set of
rational numbers, Q, was defined at the start of chapter 2.)

Dense sets of rational numbers on the number line

4 Illustrate on a number line those portions of the sets �m �m � Z�,
�m/2 �m � Z�, �m/4 �m � Z�, �m/8 �m � Z� which lie between �3. Is
each set contained in the set which follows in this list?
What would an illustration of the set �m/2� �m � Z� look like for
some large positive integer n?

5 Do you believe that if only n were large enough there would be a
rational number of the form m/2� lying between 57/65 and 64/73?
The difference between these two numbers is 1/(65 · 73). Try to find
such a number where m and n are positive integers.

6 To show that there is always a rational number of the form m/2�
between two numbers a and b, where a� b, remember that ((�

�
)�) is

a null sequence by qn 3.39, since it is a geometric progression with
common ratio less than 1. So, for sufficiently large n, (�

�
)�� b� a.

Only when n is that big can we expect to find an m/2� between a
and b. Now let k be a positive integer such that (�

�
)�� b� a. Use

the integer function [ ] defined just before qn 3.19, to locate two
integers close to a · 2�, with [a · 2�]� a · 2�� [a · 2�]� 1. Now show
that m	 [a · 2�]� 1 and n	 k satisfy the required conditions.

7 By repeatedly bisecting the interval �x � a� x� b�, show that
between any two distinct numbers on the number line, there is an
infinity of numbers of the form m/2�, where m is an integer and n is
a non-negative integer.
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A set of numbers containing an element in every interval on the
number line is said to be dense on the line. The argument of question 7
can be used to show that there is an infinity of elements of a dense set
in every interval of the number line. We have shown in question 6 that
the rational numbers are dense on the number line, even though the
proof only used rationals with denominator a power of 2. Beware!
When drawing a figure, there is no difference to be seen between a
dense set of points and a continuous line segment.

8 Let T 	 �m/2� �m � Z, n � Z��. Is T dense on the number line? Is
there a smallest positive number in T? Is there a smallest positive
rational number?

9 Let D	 �m/10� �m � Z, n � Z��. Prove that every element of T (in qn
8) is an element of D. Deduce that D is dense on the number line.
Show that �

�
�D, and use the Fundamental Theorem of Arithmetic

to show that �
�
� T.

The elements of D are called terminating decimals.
Is the set T closed under

(i) addition,
(ii) subtraction,
(iii) multiplication and
(iv) division, except by 0?

Would your answers have been the same if the questions had been
asked about the set D?

10 Check that every term of the sequence with terms

a
�
	�



, a

�
	�



� (�



)�, a

�
	�



� (�



)�� (�



)�, . . .,

a
�
	�((��



)� (��



)�� (��



)�� . . .� (��



)�), . . .

belongs to T, as defined in qn 8.

Use qn 1.3(vi) to show that a
�
	�



·
1� (��



)�

1� (��


)
,

and with the help of qn 3.42, the difference rule (3.54(v)) and the
scalar rule (3.54(i)), prove that (a

�
)� �

�
. Thus a sequence in the

dense set T may converge to a point outside T.

Infinite decimals

11 Use the Fundamental Theorem of Arithmetic to show that �
�
�D as

defined in question 9. That is to say, there is no terminating
decimal equal to �

�
.
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From qn 3.51 write down a sequence of terminating decimals which
converges to �

�
.

The limit of the sequence 0.3, 0.33, 0.333, 0.3333, . . .(with a single
recurring digit) is denoted by 0.3� , or 0.33� , or 0.333� .
We have proved that 0.3� 	�

�
.

12 Prove that the nth term in the sequence 0.9, 0.99, 0.999, 0.9999, . . .
is equal to 1� 1/10�. Deduce that 0.9� 	 1.

13 For the sequence 0.1, 0.13, 0.131, 0.1313, . . . the 2nth term is
��
���

(1� 10��� 10�
� . . .� 10�����).
Use 1.3(vi) to simplify this expression, and prove (with the help of
3.80) that the sequence converges to ��

��
.

This proves that 0.1� 3� or 0.131� 3� (either of which denotes the limit of
the sequence)	��

��
. Here there is a pair of recurring digits.

14 Use qn 1.3(vi) and 3.39 to prove that the limit of the sequence with
nth term

a� b�
1

10�
�

1

10�
� . . .�

1

10��� is a� b/999.

Find terminating decimals a and b such that 12.456� 7� 8� 	 a� b/999.
Here there is a triple of recurring digits.
Must every infinite decimal with a recurring block of digits be
equal to a rational number?

The infinite decimal d
�
.d

�
d
�
d
�
. . . d

�
. . . is the limit of the infinite decimal

sequence with nth term

d
�
�
d
�

10
�
d
�

10�
� . . .�

d
�

10�
,

where d
�
is an integer, and, when 1� i, d

�
is either 0, 1, 2, . . . or 9. (This

definition looks a bit strange when d
�
is negative, but it is convenient

for proving theorems to have all infinite decimal sequences increasing.)
This definition does not make the claim that every infinite decimal
sequence is necessarily convergent or that every infinite decimal is
necessarily a number.
In question 3.51 we found that every number on the number line is the
limit of an infinite decimal sequence.
When for all sufficiently large n, d

�
	 0, the decimal is said to terminate.

When there is a number b such that for all sufficiently large n,
d
�
	 d

��

, the decimal is said to recurr (with a recurring block of length

b).

15 Show that every rational number which is not equal to a
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terminating decimal is the limit of a recurring decimal sequence.
(Hint. Analyse the remainders on dividing the integer A by the
integer B by long division.)

16 Suppose two infinite decimals have the same limit, say
x	 d

�
.d

�
d
�
d
�
. . . d

�
. . .	 e

�
.e
�
e
�
e
�
. . . e

�
. . .. If they are different as

infinite decimals then they must differ at some digit. Suppose
d
�
� e

�
, and in fact d

�
� e

�
. Then d

�
� 1� e

�
since the numbers

are integers.
From qn 12, 0.d

�
d
�
d
�
. . . d

�
� 1�1/10�. Since an infinite decimal

sequence is monotonic increasing, x� d
�
� 1, by the inequality

rule, qn 3.76. Again, since an infinite decimal sequence is monotonic
increasing, e

�
� x.

Now e
�
�x� d

�
� 1� e

�
, so x	 e

�
	 d

�
� 1, and e

�
	 0, d

�
	 9

when 1� i.
Revise this argument for the case when the first digits to differ are
d
�
and e

�
, to show that of two equal infinite decimals, one has

recurring 9s and the other terminates.
For example, 0.5	 0.49� .

17 If the infinite decimal sequence for the infinite decimal
0.101 001 000 100001 . . ., with 1s in the �

�
n(n� 1)th positions and 0s

elsewhere is convergent, could its limit be a rational number?

Irrational numbers

18 If p and q are non-zero integers, prove that an equation of the form
p�	 2q� would contradict the Fundamental Theorem of
Arithmetic. So there can be no rational number equal to �2. List
some other square roots and cube roots which cannot equal
rational number for similar reasons.

19 If a and b are rational numbers, with b� 0, is it possible for
a� b�2 to be a rational number?

20 Let a and b be rational numbers with a� b. Show that
(a� b�2)/(1��2) is not rational. Show also that
a� (a� b�2)/(1��2)� b. Deduce that there is an irrational
number between any two distinct rationals. This, with qn 7, shows
that the irrationals are dense on the number line.

21 (Optional) Show that there can be no rational number equal to
log

��
2.
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Infinity: countability

.1 2 3

.1 7 8

.0 5 4

.1 2 3 4

.1 7 8 9

.0 7 9 4

.0 3 6 0

.1 2 3 4 5

.9 8 7 6 5

.2 0 6 8 4

.0 1 0 0 2

.0 1 1 1 1

.1 2 3 4 5 6

.2 2 2 3 3 3

.2 7 1 8 0 9

.7 5 3 0 1 2

.7 7 2 2 8 8

.0 0 0 1 1 1

22 In the squares above, filled with terminating decimals between 0
and 1, think how you could fill in the last row with a new
terminating decimal between 0 and 1, not in the earlier rows. Can
you think of an automatic procedure that would give you a new
row without further checking, for a 100� 100 square or bigger?
What about looking at the diagonal entries (marked bold here) and
making sure that the entries below them in your last line differed
from them?

23 If you made a sequence of infinite decimals between 0 and 1, could
you always construct a new infinite decimal between 0 and 1 that
was not in the list you had made?

One way of describing the result of qn 23 is to say that there are too
many infinite decimals between 0 and 1 to put them all in one
sequence. Any sequence is of the form a

�
, a

�
, a

�
, . . ., a

�
, . . .. So if the terms

are all different, the suffix shows how to match the terms of the
sequence with the natural numbers, N.

24 By starting 0,�1,�1, . . . show how to put all the integers into a
sequence. This will match N to Z, one-to-one.
Another way to construct a sequence which includes every integer
is to match the positive integer n with 2� and the negative integer
�n with 2� · 3. Then running through the selected natural numbers
of the form 2� and 2� · 3 in order of size gives a way of building a
sequence which includes each of the integers exactly once.
What are the first seven integers when this second method is used
to construct a sequence running through Z?.

25 If a and b are positive integers, matching the rational number a/b
(always taken in lowest terms) with the natural number 2� · 3
 gives
a one-to-one matching of the positive rationals with a (rather
small!) subset of N. If we then run through the selected natural
numbers of the form 2� · 3
 in order of size, we have a way of
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building a sequence which includes each of the positive rationals
exactly once. What are the first four terms of this sequence?
If, further, the rational number �a/b is matched with 2� · 3
 · 5,
show how to construct a sequence which runs through all the
rational numbers once. What are the first six terms of this
sequence?

26 (Optional) If a, b, c and d are positive integers matching the
number (a/b)� (c/d)�2 with the natural number 2� · 3
 · 5� · 7� gives
a one-to-one matching of the numbers x� y�2 (where x and y are
positive rationals) with a subset of N, provided the fractions a/b
and c/d are in their lowest terms. Use this matching to construct a
sequence containing all the numbers of the form x� y�2, where x
and y are positive rationals. List the first six numbers in your
sequence.

When it is possible to put the elements of a set into a sequence without
repetition, the set is said to be countably infinite. There is then a
one-to-one correspondence between the elements of the set and the
natural numbers N.

27 Which of the following sets are countably infinite: Z, T (of qn 8), D
(of qn 9), Q, the set of infinite decimals between 0 and 1?

When an infinite set is not countably infinite it is said to be uncountable.
We will shortly claim as a principle that every infinite decimal is a
number, that is that every infinite decimal sequence is convergent. The
set of infinite decimals is then known as the set of real numbers and
denoted by R.

The contrast between the countably infinite rational numbers and
the uncountable real numbers is remarkable. A countably infinite set of
numbers can be shown to occupy only a small portion of the real line.

28 If for each n � N, the interval �x � n� 1/2�� x� n� 1/2�� is deleted
from the number line, is every element of N deleted? What is the
total length deleted?

29 Let 
 be a fixed positive number. If for each n � N, the interval
�x � n� 
/2��x� n� 
/2�� is deleted from the number line, is
every element of N deleted? What is the total length deleted? Can
you make this length as small as you like? How much length
should we say the set N occupies?

30 Let (a
�
) be any sequence of numbers and let 
 be any positive

number. If for each n � N, the interval �x � a
�
� 
/2�� x� a

�
� 
/2��

is deleted from the number line, is every element of the sequence
(a

�
) deleted? What is the total length deleted? Deduce that a
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countably infinite set of numbers does not occupy any length on
the number line.

When we remember that the set of rational numbers is countably
infinite (qn 25) and that the set of rational numbers is dense on the line
(qn 7), it is particularly strange to realise that qn 30 implies that when
every rational point is removed together with a small interval around it,
most of the real number line remains untouched. Despite appearances, a
real line on which only points corresponding to rational numbers can
be identified is mostly empty!

In the uncountability proof for infinite decimals, the construction of
a new infinite decimal could be done even if all the original infinite
decimals were rational. Can you see why this does not establish that the
rationals are uncountable?

Summary

Denseness

Definition If a set of numbers has a member in every
interval on the number line it is said to be dense
on the line.

Theorem
qn 7

A dense set on the number line has an infinity
of members in every interval.

Theorem
qn 9

The terminating decimals are dense on the
number line.

Theorem
qn 6

The rational numbers are dense on the number
line.

Decimals and irrationals

Definition An infinite decimal d
�
.d

�
d
�
d
�
. . . d

�
. . . is the limit

of the infinite decimal sequence with nth term

d
�
�
d
�

10
�
d
�

10�
� . . .�

d
�

10�
,

where d
�
is an integer, and, when 1� i, d

�
is

either 0, 1, 2, . . . or 9.
Definition If d

�
	 0 for sufficiently large n, the infinite

decimal is said to terminate.
Definition If d

�
	 d

��

for sufficiently large n and some

fixed b, the infinite decimal is said to recur, with
a recurring block of length b.
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Theorem
qn 9, 14, 15

An infinite decimal is equal to a rational
number if and only if it is either terminating or
recurring.

Theorem
qn 16

If two distinct infinite decimals are equal, then
one is terminating and the other has recurring
9s.

Theorem
qn 18

There is no rational number whose square is 2.

Theorem
qn 20

There is an irrational number between any two
rationals.

Theorem
qn 20

The irrational numbers are dense on the line.

Countability

Definition If there is a sequence of distinct terms from a set
which contains all the terms of the set, then that
set is said to be countably infinite.

Theorem
qn 25

The set of rational numbers is countably
infinite.

Theorem
qn 23

The set of infinite decimals between 0 and 1 is
not countably infinite.

The completeness principle: infinite decimals are convergent

The properties of numbers which we have worked with so far
consist of

(1) algebraic properties listed in appendix 1,

(2) properties of less than, based on the notion of positiveness, in
chapter 2,

(3) the Archimedean Principle in chapter 3.

We have been able to show that in a number system satisfying these
properties, every number is the limit of an infinite decimal sequence (qn
3.51).
Now the rational numbers, by themselves, satisfy (1), (2) and (3), so
these number properties do not ensure the existence of square roots or
of limits for non-recurring infinite decimals.
To have a number system with all the properties we expect, namely, the
real number system, R, we adopt one more principle, the completeness
principle.

76 4 Completeness



Every infinite decimal sequence is convergent.

Or, in other words, every infinite decimal is a real number. That is to
say, the set of real numbers is the set of limits of infinite decimal
sequences.

31 Write down the first five terms of the infinite decimal sequence with
limit

0.123 456 789 101 112 . . ..

Is the sequence monotonic increasing?
Is every term rational?
State an upper bound for this sequence.
Can you find an upper bound which is smaller than this?

32 If two numbers a and b are given as infinite decimals, explain how
a� b, a� b, ab and a/b are determined when b� 0.

The remainder of this chapter will be devoted to establishing six
properties of the real numbers, any one of which is in fact equivalent to
the completeness principle, in the context of the number properties
described as (1), (2) and (3) above. Other authors commonly select one
of these six as their affirmation of completeness, but this list does not
exhaust the alternatives.

I. Every bounded monotonic sequence of real numbers is convergent.

II. The intersection of a set of nested closed intervals is not empty (the
term ‘nested’ is defined in qn 42).

III. Every bounded sequence of real numbers has a convergent
subsequence.

IV. Every infinite bounded set of real numbers has a cluster point (the
term is defined before qn 48).

V. Every Cauchy sequence of real numbers is convergent (the term
‘Cauchy sequence’ is defined before qn 56).

VI. Every non-empty set of real numbers which is bounded above has a
least upper bound.

You will find I, III and VI used repeatedly in the rest of the book,
though all six are necessary for the further study of analysis.
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Bounded monotonic sequences

33 Explain why every monotonic sequence is either bounded above or
bounded below.
Deduce that an increasing sequence which is bounded above is
bounded, and that a decreasing sequence which is bounded below is
bounded.

34 (after du Bois-Reymond, 1882) We suppose that (a
�
) is a monotonic

decreasing sequence which is bounded below, by L, and we seek to
prove that (a

�
) is convergent.

(i) Name a lower bound for the sequence (a
�
) which is an integer.

(ii) Name an upper bound for the sequence (a
�
) which is an

integer.
(iii) Must there be consecutive integers c, c� 1 for which c is a

lower bound for (a
�
) and c� 1 is not? For such integers let

t
�
	 d

�
	 c.

(iv) Consider the eleven numbers t
�
, t

�
� �

��
, t

�
� �

��
, . . ., t

�
���

��
.

Is there a c	 0, 1, 2, . . ., or 9 such that t
�
�

c

10

is a lower bound for (a
�
) and t

�
�
c� 1

10
is not?

Let d
�
	 c and t

�
	 d

�
.d

�
.

(v) Proceed inductively to define an infinite decimal sequence (t
�
),

in such a way that t
�
is a lower bound for the sequence (a

�
)

while t
�
� 1/10� is not a lower bound.

Define t
���

	 t
�
�

c

10���
, with c	 0, 1, 2, . . ., or 9.

where t
���

is a lower bound for (a
�
) while t

���
� 1/10��� is

not.
c	 d

���
, and t

���
	 d

�
.d

�
d
�
d
�
. . . d

�
d
���

.
(vi) Why is the sequence (t

�
) convergent? Let its limit be D.

(vii) For a constant k, say why (a
�
� t

�
)� a

�
�D� 0.

(viii) How do you know that for sufficiently large n,
D� a

�
�D� 1/10� for a given positive integer i.

(ix) Prove that (a
�
)�D.

35 Use question 34 to prove that a monotonic increasing sequence
which is bounded must be convergent.

Now we have established that monotonic sequences which are bounded
are convergent, and it easily follows that monotonic sequences which
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are unbounded tend to ��. Questions 34 and 35 prove that the
convergence of infinite decimal sequences implies the convergence of
monotonic bounded sequences. The converse is obvious, since every
infinite decimal sequence is bounded and monotonic. So we could have
adopted the convergence of monotonic bounded sequences as our
completeness principle.

36 Use qn 2.49 to prove that the sequence with nth term (1� 1/n)� has
a limit which lies between 2 and 3.

nth roots of positive real numbers, n a positive integer

37 If a and x are positive real numbers with a� x�, prove that
a� (�

�
(x� a/x))��x�. Deduce that if x

�
is positive and a�x

�
�, the

sequence (x
�
) defined by

x
���

	
1

2 �x��
a

x
�
�

is convergent. Find its limit. Deduce that every positive real
number has a unique positive real number as square root. Compare
with qn 2.37. (This method of approximating to square roots is
usually known as Horner’s method, though it coincides with
Newton’s approximation in appendix 3, and was used centuries
before by the Chinese.)

38 Prove that the sequences (a
�
) and (b

�
) of question 2.38 are both

convergent to the same limit. Prove the analogous result for
question 2.39.

39 Use question 37 to prove that positive real numbers have real 4th
roots, 8th roots, 16th roots, etc.

40 Let k be a positive integer.
If 0� c� 1, then c�� c� 1�, and if 1� c, then 1� � c� c�, by qn
2.11.

0

0

c

c

1

1k

x k

x

1

1

c

ck

x k

x
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Thus for any positive number c� 1, we can choose positive
numbers a

�
and b

�
such that a

�
� � c� b

�
�.

Now consider the number d	 (a
�
� b

�
)/2.

If d�	 c, we have found a kth root of c.
If d�� c, let a

�
	 d and b

�
	 b

�
.

If d�� c, let a
�
	 a

�
and b

�
	 d.

So a
�
� a

�
� b

�
� b

�
, a

�
�� c� b

�
�, and b

�
� a

�
	 (b

�
� a

�
)/2.

Repeat this process to define sequences (a
�
), (b

�
) inductively such

that a
�
� a

���
� b

���
� b

�
, a

�
�� c� b

�
�, and

b
���

� a
���

	 (b
�
� a

�
)/2.

(i) Why must the sequence (a
�
) be convergent?

(ii) Why must the sequence (b
�
) be convergent?

(iii) Why must (b
�
� a

�
) be a null sequence, and the limits of (a

�
)

and (b
�
) equal?

(iv) Denote the common limit by l. Why must (a
�
�)� l� and

(b
�
�)� l�?

(v) Why must (b
�
�� a

�
�) be a null sequence?

(vi) Use a
�
� � c� b

�
� and the squeeze rule to prove that (c� a

�
�)

is a null sequence.
(vii) Deduce that c	 l�, so that c has a kth root, namely l.

41 (i) Prove that the sequence (n( ��a� 1)) of qn 2.50 is convergent
when 1� a.

(ii) Prove that lim n( ��(1/a)� 1)	� lim n( ��a� 1), using qn 3.57
and the quotient rule 3.67.

(iii) Prove also that lim n( ��(ab)� 1)	
lim n( ��a� 1)� lim n( ��b� 1), using qn 3.57 and the product
rule qn 3.54(vi).

If you consider lim n( ��a� 1) as a function of a, can you think of
any other function of a with similar properties?

Nested closed intervals

42 The Chinese Box Theorem
(a

�
) and (b

�
) are sequences such that a

�
� a

���
� b

���
� b

�
for all

values of n.
Let [a, b] denote the closed interval �x � a�x� b�.

(i) Say why [a
�
, b

�
]� [a

�
, b

�
] � . . .� [a

�
, b

�
]	 [a

�
, b

�
].

We describe this by saying that these intervals are nested.
(ii) Why must each of the two sequences be convergent?
(iii) By considering the limits of the two sequences prove that at

least one number lies in all the intervals [a
�
, b

�
].
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(iv) By considering intervals of the type �x � 0�x� 1/n�, show
that the intersection of nested open intervals may be empty.

Convergent subsequences of bounded sequences

43 Find an upper bound and a lower bound for the sequences with
nth term (i) (�1)�, and (ii) (�1)�(1� 1/n).
Is either sequence convergent? In each case find a convergent
subsequence.

44 Look back to your proof in qn 3.62 that every convergent sequence
is bounded. Is it true that every bounded sequence is convergent?

45 The ordinary decimal representation of positive integers may be
used to construct a sequence of terminating decimals (0.n). The first
twelve terms of this sequence are

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.10, 0.11, 0.12, . . .

Is this sequence bounded?
Identify at least two convergent subsequences.

46 Prove that every bounded sequence has a convergent subsequence.
Use questions 3.16 (for the existence of a monotonic subsequence),
3.12 (on the boundedness of subsequences), and questions 34 and 35
of this chapter.

This theorem can be applied to such sequences as (sin n) and
(n�2� [n�2]) which appear to have no regularity at all.

Without paying proper regard to history, this theorem has
sometimes been called the Bolzano—Weierstrass Theorem, the name
being transferred from qn 53, to which it is closely related. The theorem
will be used repeatedly in our study of real functions.

Because an infinite decimal sequence is bounded and monotonic,
the limit of any subsequence is the limit of the sequence (by qn 3.80).
Thus we could, equally well, have adopted ‘every bounded sequence has
a convergent subsequence’ as our completeness principle.

47 By considering the infinite decimal sequence for �2, show that if
only rational numbers are considered, a bounded sequence need not
have a convergent subsequence.

Cluster points (the Bolzano–Weierstrass theorem)

Because of the matching of real numbers with the points of a
number line, it is sometimes helpful to refer to real numbers as ‘points’.
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For any given positive 
, there is an infinity of n � N, such that
�
� 1/n�
, and we know this because (1/n) is a null sequence. In
other words, there is an infinity of points from the set �1/n � n � N� in
any neighbourhood of 0. See qn 3.61 for the term ‘neighbourhood’. This
makes 0 a cluster point or an accumulation point for the set.

The point �


is not a cluster point for the set because we can find a

positive value of 
 such that �


� 
� 1/n� �



� 
 is only possible for the

single natural number n	 4.

48 State a value of 
 such that �


� 
� 1/n� �



� 
 only holds for a

unique natural number n.

49 State a positive value of 
 such that �
�
� 
 � 1/n� �

�
� 
 does not

hold for any natural number n. This means that the point �
�
is not a

cluster point for the set �1/n � n � N�.

0 11
8

1
4

1
3

1
2

50 Name three cluster points for the set

�
1

2�
�

1

3�
�m, n � N� .

Name two points between 0 and 1 which are not cluster points for
the set.

51 Can a finite set of points on the number line have a cluster point?

52 Describe an infinite set of points that has no cluster point.

A set A of real numbers has an upper bound U if a�U for all a �A,
and has a lower bound L if L � a for all a �A. A set is said to be
bounded if it has an upper bound and a lower bound. The language
here is like that for the upper bound and lower bound of a sequence
introduced in qn 3.5.

53 The Bolzano—Weierstrass Theorem
Let A be an infinite set of real numbers with an upper bound U
and a lower bound L.

(i) Construct a sequence of distinct points in A.
(ii) Is the sequence (a

�
) bounded?

(iii) Why must the sequence (a
�
) contain a convergent

subsequence?
(iv) If the convergent subsequence (a

��
)� a, must a �A? Must

L � a�U?
(v) Whether a �A or not, show that a is a cluster point of A.
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This proves that every infinite bounded set has a cluster point. It was
formulated by Weierstrass about 1867, and proved by a method due to
Bolzano (1817) of repeated bisections of the bounded interval
containing the set A, choosing always a half containing an infinity of
points of A. The name, Bolzano—Weierstrass, was given by Cantor
(1870) and Heine (1872). Cantor said that this theorem was the basis of
all the more important mathematical truths.

To understand the significance of this theorem it is necessary to
recognise that it would be false if the rational numbers were the only
ones available.

54 Let A be the set of terminating decimals in the infinite decimal
sequence for �2. State integer bounds for this set. Prove that no
rational number can be a cluster point for A.

Cauchy sequences

The great virtue of the theorem that a bounded monotonic
sequence is convergent is that it provides a method of determining the
fact of convergence without knowing the value of the limit.

Is there a condition guaranteeing the convergence of a
non-monotonic sequence which does not require knowledge of the
value of the limit?

A reasonable conjecture would be to suggest that a sequence was
convergent if the differences between consecutive terms form a null
sequence. But there are counter-examples to such a conjecture. One is
provided by the harmonic series which we will examine in the next
chapter. Another derives from the sequence (�n).

We have shown that the differences between consecutive terms
(�(n� 1)��n) gives a null sequence in qn 3.35(v), and that the
sequence itself tends to infinity in qn 3.20. So the condition ‘(a

���
� a

�
)

is null’ does not guarantee the convergence of (a
�
).

Examining differences of the form (a
���

� a
�
) for some constant k is

no more effective, even for a large value of k, than for k	 1 since the
sequence (�(n/k)) also tends to infinity. However, it is worth examining
the hypothesis that the difference (a

���
� a

�
) is sandwiched between two

null sequences for all values of k. If for example

�1/n� a
���

� a
�
� 1/n, for all positive integers k,

is this sufficient for the sequence (a
�
) to be convergent? We first

establish the converse result.
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55 If (a
�
)� a, use the fact that

� a
���

� a
�
�� � a

���
� a �� � a� a

�
� ,

from the triangle inequality, qn 2.61, to show that � a
���

� a
�
� may

be arbitrarily small, irrespective of the value of k, provided only
that n is large enough.
Or, to use more precise language, that given 
� 0, there exists an
N such that � a

���
� a

�
� � 
, when n�N.

So the condition we are examining is a necessary consequence of
convergence. The argument in qn 55 does not depend upon
completeness.

The condition we are investigating is called the Cauchy criterion.
A sequence (a

�
) is said to satisfy the Cauchy criterion, when

given ��� 0, there exists an N such that
n�N� � an�k � an � �� �, for all positive integers k.

A sequence satisfying the Cauchy criterion is called a Cauchy sequence.
In question 55, we showed that every convergent sequence is a Cauchy
sequence. We now explore the converse.

56 If (a
�
) is an infinite decimal sequence prove that � a

���
� a

�
� � 1/10�.

This shows that an infinite decimal sequence is necessarily a
Cauchy sequence.
Thus the claim that every Cauchy sequence is convergent implies
the completeness principle.

57 The General Principle of Convergence.
Let (a

�
) be a Cauchy sequence of real numbers.

By putting 
	 1 in the Cauchy criterion prove that every Cauchy
sequence is bounded (use qn 3.13). Use question 46 to establish the
existence of a convergent subsequence (a

��
)� a.

Now use the triangle inequality � a
�
� a � � � a

�
� a

��
� � � a

��
� a � to

prove that (a
�
)� a.

So every Cauchy sequence of real numbers converges to a real
limit.

In 1882, P. du Bois-Reymond gave the name ‘The General Principle of
Convergence’ to the proposition that a sequence is convergent if and
only if it is a Cauchy sequence.
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58 Locate the continued fractions

1, 1��
�
, 1�

1

2��
�

, 1�
1

2�
1

2��
�

, 1�
1

2�
1

2�
1

2��
�

,

on a number line.
If, for all n, the terms of a sequence (a

�
) satisfy the inequalities

a
����

� a
����

� a
����

� a
��
, and � a

���
� a

�
�� 1/n, prove that the

sequence is convergent.

Least upper bounds (sup) and greatest lowest bounds (inf)

Upper bounds and greatest terms

59 Some sets of numbers have a greatest member.
What is the greatest member of �0, 1, 2, 4,�100,�50�?
Must any finite set of numbers have a greatest member?
What is the greatest member of �x � 0�x� 1�?

60 (i) (a) Is 1 an upper bound for �x � 0�x� 1�?
(b) Can any number less than 1 be an upper bound for

�x � 0� x� 1�?
(ii) (a) Is 3 an upper bound for �x � 0�x� 1, 2� x� 3�?

(b) Can any number less than 3 be an upper bound for
�x � 0� x� 1, 2�x� 3�?

61 Check that 2 is an upper bound for each of the following sets:

(i) �x � 0� x� 1�,
(ii) �x � 0� x� 1�,
(iii) �x � 0� x� �



, �


�x� 1, 1�



�x� 1�

�
�,

(iv) �x � 0� x� �
�
, 1�x� 1�

�
�,

(v) �1� 1/n � n � N�,
(vi) �2� 1/n � n � N�,
(vii) �1� (�1)�/n � n � N�,
(viii) �x � �

�
� x� 2,x � Q�,

(ix) �q � q�� 2, q � Q��.

For which of these sets can you find a number less than 2 which is
still an upper bound for the set?
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Least upper bound (sup)

sup

sup

sup



When (i) u is an upper bound for a set A of real numbers, and (ii)
every v less than u is not an upper bound for A, then and only then, u
is called the least upper bound of A, and denoted by supA.
The meanings of the terms ‘least upper bound’ and ‘sup’ lie in the
words of this definition, and nowhere else!

If a set of numbers has a greatest member, the greatest member is
the least upper bound of that set.

In qn 60 you proved that 1 is the least upper bound of
�x � 0� x� 1�, and that 3 is the least upper bound of
�x � 0� x� 1, 2�x� 3�. A finite set of real numbers and a closed
interval are examples of sets with a greatest member.

In qn 61 you should have found that 2 is the least upper bound of
�2� 1/n � n � N� and �x � �

�
�x� 2, x � Q�. A strictly increasing sequence

and an open interval are examples of sets without a greatest member.
The least upper bound is then a cluster point of the set. This will follow
from qn 64.

62 If a set A has a least upper bound, supA, must supA be a member
of A? Might supA be a member of A?

63 Show that a set A cannot have two different least upper bounds.

64 If a set A has a least upper bound supA, why must there be an
a �A such that (supA)� 
 � a� supA, for any positive number 
?
Use this result to construct a strictly increasing sequence of
elements of A within the interval (supA� 1, supA) on the
assumption that supA �A.

65 If u is an upper bound for the set A, and for any positive number 
,
you can find an a �A, such that u� 
 � a� u, must u	 supA?
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(Hint. Draw a diagram. Suppose v� u and that v is also an upper
bound for A. Try putting 
	 u� v.)

66 Let (a
�
) be a monotonic increasing sequence with limit a. Prove that

a	 sup�a
�
� n � N�. Use qn 3.80.

Lower bounds and least members

67 Give some examples of sets of numbers which have a least member.
Make sure some of them are finite and some are infinite. See Fig.
4.67.

68 (a) Is 0 a lower bound for �x � 0�x� 1�?
(b) Can any number greater than 0 be a lower bound for

�x � 0� x� 1�?

69 Give an example of a bounded set of numbers which does not have
a least member.

70 Check that 0 is a lower bound for each of the following sets:

(i) �x � 0� x� 1�,

(ii) �x � 0� x� 1�,

(iii) �x � 0� x� �


, �


�x� 1, 1�



�x� 1�

�
�,

(iv) �x � 0� x� �
�
, 1�x� 1�

�
�,

(v) �1� 1/n � n � N�,

(vi) �2� 1/n � n � N�,

(vii) �1� (�1)�/n � n � N�,

(viii) �x � �
�
� x� 2,x � Q�,

(ix) �q � q�� 2, q � Q��.

For which of these sets can you find a number greater than 0 which
is still a lower bound for the set?

inf

inf

inf

Fig 4.67
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Greatest lower bound (inf)



When (i) l is a lower bound for a set A of real numbers, and (ii)
every m, greater than l, is not a lower bound for A,

then and only then, l is called the greatest lower bound of A, and
denoted by infA.
The meanings of the terms ‘greatest lower bound’ and ‘inf ’ lie in the
words of this definition, and nowhere else!

If a set of numbers has a least member, that number is the greatest
lower bound for the set.

In qn 68 you proved that 0 is the greatest lower bound of
�x � 0� x� 1�.
In qn 70 you should have found that 0 is the greatest lower bound of
�x � 0� x� 1�, �x � 0� x� 1�, �1� (�1)�/n � n � N� and
�q � q�� 2, q � Q��.

71 Show that a set A cannot have two different greatest lower bounds.

72 If a set A has a greatest lower bound infA, and 
 is any positive
number, why must there be an a �A such that
infA� a� (infA)� 
?

73 If l is a lower bound for the set A, and for any positive number 
,
you can find an a �A, such that l� a� l� 
, must l	 infA? (Hint.
Draw a diagram. Suppose l�m and m is a lower bound for A. Try
putting 
	m� l.)

74 Let A be a set of real numbers with a least upper bound supA, and
let B	 ��x �x �A�. Prove that infB	�supA.

75 (i) Prove that the set of numbers �x � x� 0� has no greatest
member.

(ii) Prove that the set of numbers �x � x� 10� has no greatest
member.

76 List some upper bounds for the set �x �x� 0�, and then identify the
set of all upper bounds for �x �x� 0�. Does the set of all upper
bounds have a least member?

77 List some upper bounds for the set �x �x� 0�, and then identify the
set of all upper bounds for this set. Does the set of upper bounds
have a least member?

78 Let (a
�
) be a monotonic decreasing sequence with limit a. Prove

that a	 inf�a
�
� n � N�. Use qn 66 and qn 74.
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sup, inf and completeness

79 Every infinite decimal sequence consists entirely of terminating
decimals, which are rational numbers. If (a

�
) is an infinite decimal

sequence, what is the least upper bound of the set of terms of this
sequence? Deduce that if every non-empty set of real numbers
which is bounded above has a least upper bound, the completeness
principle must follow.

80 We seek a least upper bound for a non-empty set which is bounded
above.

Let X be a non-empty set of real numbers with an upper bound u.
Let x �X. Then x� u.
If x is an upper bound for X, then x is the greatest member of X and
so x is the least upper bound, and the search ends.

x u1
2
  (x + u)

x u1
2
  (x + u)

So suppose x is not an upper bound for X. Let l
�
	x and u

�
	 u.

Now consider the number d	 (l
�
� u

�
)/2.

If d is not an upper bound for X, let l
�
	 d and u

�
	 u

�
.

If d is an upper bound for X, let l
�
	 l

�
and u

�
	 d.

So l
�
� l

�
� u

�
� u

�
, and u

�
� l

�
	 (u

�
� l

�
)/2.

Repeat this process to define sequences (l
�
), (u

�
) inductively such that

l
�
� l

���
� u

���
� u

�
, where u

�
is an upper bound for X, l

�
is not and

u
���

� l
���

	 (u
�
� l

�
)/2.

(i) Why is the sequence (l
�
) convergent?

(ii) Why is the sequence (u
�
) convergent?

(iii) Why is the sequence (u
�
� l

�
) null and why are the limits of

(l
�
) and (u

�
) equal (to s, say)?

(iv) By considering the sequence (u
�
) show that the limit, s, is an

upper bound for X. (For any x �X,x� u
�
for all n, so x� s

by the closed interval property, qn 3.78.)
(v) By considering the sequence (l

�
) show that the limit is the

least upper bound for X (from qn 65).

So any non-empty set of real numbers which is bounded above has
a least upper bound.
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81 Articulate a theorem for greatest lower bounds analogous to that of
qn 80.

82 If A and B denote bounded sets of real numbers, how do the
numbers supA, infA, supB and infB relate if B�A? Give
examples of unequal sets for which supA	 supB and infA	 infB.

lim sup and lim inf

The ideas in questions 83 and 84 will only be used in later chapters
in qn 5.102 and 5.107. 5.107 will be used at the end of chapter 12.
They have been bracketed, not because they are incidental in the
development of analysis, but because they may most profitably be
studied at a second reading.

(83)For any bounded sequence with an upper bound U and lower
bound L

(i) how do you know that (a
�
) contains a convergent

subsequence;
(ii) if a is the limit of a convergent subsequence, how do you

know that L � a�U;
(iii) how do you know the set of limits of convergent subsequences

has a supremum and an infimum?

The supremum is called lim sup an and the infimum is called
lim inf an

Question 83 shows the power of the theorems we have developed by
establishing the existence of numbers about which we know very little.
A concrete and constructive approach to the same concepts is given in
the following question.

(84) (i) Illustrate on a graph the first few terms of the sequence with
nth term a

�
	 (�1)�(1� 1/n).

(ii) Is this sequence bounded?
(iii) Is this sequence convergent?
(iv) Identify one convergent subsequence.
(v) Find sup�a

�
� n � N� and inf�a

�
� n � N�.

(vi) Let u
�
	 sup�a

�
� k� n� and let l

�
	 inf�a

�
� k� n�. Find the

first four terms of the sequence (u
�
) and the first four terms of

the sequence (l
�
).

(vii) Explain why u
���

� u
�
for all k, and why l

�
� l

���
for all k.

(viii) Are both (u
�
) and (l

�
) bounded monotonic sequences?

(ix) The limits of these sequences are lim sup a
�
and lim inf a

�
respectively. Find these limits.
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The method used in qn 84 applies quite generally and provides a more
illuminating way of describing lim sup a

�
and lim inf a

�
. This description

enables us to prove, for example, that a sequence (a
�
) is convergent if

and only if lim sup a
�
	 lim inf a

�
.

In the absence of completeness, a bounded sequence need not have
any convergent subsequences (take the infinite decimal sequence of �2
for example) and therefore neither lim sup nor lim inf may be defined.

Summary – completeness

The completeness principle
Every infinite decimal sequence is convergent.
Definition The limit of every infinite decimal sequence is a

real number
Theorem

qns 34, 35
Every bounded monotonic sequence is
convergent.

Theorem
qn 36

The sequence with nth term (1� 1/n)� is
convergent with limit (e) between 2 and 3.

Theorem
qn 40

Every positive real number has a unique nth
root.

Theorem
qn 46

Every bounded sequence has a convergent
subsequence.

Definition A sequence (a
�
) is said to satisfy the Cauchy

criterion, when, given 
� 0, there exists an N,
such that n�N� � a

���
� a

�
�� 
, for all

positive integers k.
Definition A sequence satisfying the Cauchy criterion is

called a Cauchy sequence.
The General Principle of Convergence

qns 55—57 A sequence is convergent if and only if it is a
Cauchy sequence.

Definition An upper bound for a set A of real numbers is
called a least upper bound, when no lesser
number is an upper bound for the set. The least
upper bound of A is denoted by supA.

Theorem
qn 80

Every non-empty set of real numbers which is
bounded above has a least upper bound.

Theorem Any one of the following propositions is
sufficient to imply the completeness principle:

After qn 35 1. Every bounded monotonic sequence is
convergent.

After qn 46 2. Every bounded sequence has a convergent
subsequence.
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qn 56 3. Every Cauchy sequence is convergent.
qn 79 4. Every non-empty set of real numbers which is

bounded above has a least upper bound.

Historical note

About 500 B.C. the Pythagoreans showed that the sides of a 45, 45,
90 triangle were incommensurable. This is equivalent, in modern terms,
to proving that �2 is irrational. A multiplicity of irrationals is discussed
in Euclid, Book X. The treatment of ratios given in Euclid, Book V (c.
300 B.C.) includes a careful description (in definition 5) of how to
compare two incommensurable lengths. Until the nineteenth century,
European mathematicians took their notions of number from a
geometric view of measurements.

Eighteenth century writers implicitly assumed that bounded
monotonic sequences were convergent in their discussion of series and
also assumed that lines which crossed on a graph necessarily had a
point of intersection.

The description of a least upper bound which is not attained appears
in the thesis of C. F. Gauss (1799), and the notion of lim sup and lim inf,
geometrically defined, in an unpublished notebook of his about 1800.
The term ‘la plus grande des limites’ is used by Cauchy (1821). The
notation, lim sup and lim inf, was introduced by Pasch in 1887.

In 1817 B. Bolzano proved that the convergence of Cauchy
sequences implied the least upper bound property, though his proof
that Cauchy sequences converged was defective since he had nothing
equivalent to an axiom of completeness.

In 1821, A. L. Cauchy proved that the partial sums of a convergent
series (see chapter 5) satisfy the Cauchy criterion and claimed that partial
sums satisfying the Cauchy criterion were those of a convergent series,
but without proof. Cauchy also presumed that bounded monotonic
sequences were convergent, both in his work on series and in his work
on continuity. Cauchy stated that irrational numbers were limits of
sequences of rational numbers, but did not argue from this proposition.

Until the 1860s there was no public discussion to clarify the status
of irrational numbers. In his lectures in Berlin in 1865, K. Weierstrass
gave an elaborate construction of positive irrational numbers as
bounded infinite sums of rational numbers. Weierstrass insisted on the
fundamental importance of the theorem that an infinite bounded set has
a cluster point, which he proved in his lectures from about 1867.

In attempting to simplify the treatment of Weierstrass, both E.
Heine and G. Cantor defined real numbers as the limits of rational

92 4 Completeness



Cauchy sequences which they called fundamental sequences (1872). After
reading Heine’s and Cantor’s treatments, Dedekind decided to publish
work that he had done in 1858, when he acknowledged the
unprovability of the convergence of monotonic bounded sequences from
a geometric standpoint. Dedekind described points on the number line
(whether rational or irrational) as producing a cut in the rational
numbers, separating those above the cut from those below. This
description is similar to that in Euclid, Book V, but Dedekind’s new
definition of numbers as cuts in the rationals led to formal proofs of
their algebraic properties and of completeness, in that every cut of this
new system is actually a cut of the rationals.

Independently of the German tradition, C. Méray, a student of
Cauchy, had proved that the convergence of bounded monotonic
sequences implied the convergence of Cauchy sequences by considering
their eventual upper bounds and eventual lower bounds respectively. In
the same paper (1869) Méray also defined irrational numbers as
fictitious limits of rational Cauchy sequences.

Defining a real number as a pair of subsets of the rationals (as
Dedekind) or as a family of Cauchy sequences (as Méray and Cantor)
seemed to divorce numbers which originate in counting and
measurement from their roots. So in 1882, P. du Bois-Reymond
proposed as a postulate that every decimal number (whether infinite or
not) corresponded to a unique point on an orientable line, and it is this
proposal which has inspired the choice of completeness principle in this
book. In the same spirit, Ascoli proposed as a postulate in 1895 that a
set of nested closed intervals with length tending to zero had a unique
common point.

All of this work presumed that the rational numbers were
well-founded and that it was only irrationals that were not precisely
defined. A modern, axiomatic, approach avoids any notion that some
numbers are more ‘real’ than others, but the fact that the real numbers
can be constructed from the rational numbers (whether by Dedekind
cuts, families of Cauchy sequences, infinite decimals or nested intervals)
establishes that there is nothing inherently contradictory in introducing
a principle (or axiom) of completeness.

Galileo noted in his Discourses on Two New Sciences (1638) that the
mapping n� n� matched the set N, one-to-one, with a proper subset of
N. He also noted that the mapping x� �

�
x matched the set

�x � 0� x� 2�, one-to-one, with the set �x � 0�x� 1�, another
one-to-one matching of a set with a proper subset. Either one of these
mappings provides a counter-example to Euclid’s axiom: the whole is
always greater than the part. It was Bolzano (1851) who first recognised
that this was always a possibility with infinite sets.
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Almost at the same time that Weierstrass was successfully banishing
infinitesimals and the infinite from definitions of limits (these two
notions had been the main tools for discussing limits in the seventeenth
and eighteenth centuries), Cantor and Dedekind were in correspondence
about infinite sets and the possibility of transfinite cadinals. Cantor’s
first paper on the subject was published in 1874 and contained a proof
that the set of algebraic numbers (solutions of polynomial equations
with integer coefficients) was countably infinite while the set of real
numbers was not. Modestly, he claimed that this provided a new proof
that transcendental numbers were dense, which had been shown by
Liouville in 1851. The argument of qn 23 was given by Cantor in 1891.
In 1879, Cantor introduced the notion of a dense set of numbers. It was
in 1885 that A. Harnack showed that a countable infinity of points did
not occupy length on the line.
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Answers and comments

1 a	 2, b	 3, c	 0, d	 0, e	 1, f	 2.

2 a	 0, b	 �2, c	 2, d	 �1, e	 �1, f	�1.
2775/999 999	 5� · (�

�
)� · (�

�
) · ( �

��
) · ( �

��
).

3 Every positive rational number, different from 1, may be expressed in a
unique way as a product of prime numbers and of reciprocals of prime
numbers.

4 The numbers of �m/2� �m � Z� are evenly spaced at intervals of 1/2�.

5 2��� 65 · 73� 2��, so 1/2��� 1/(65 · 73). [2�� · �

��
]	 7182, so

�

��

� 7183/2��� ��
��
.

6 [a · 2�]� a · 2�� [a · 2�]� 1� [a · 2�]/2�� a� [a · 2�]/2�� 1/2� � b.

7 Since there is an m/2� number in �x � a� x� b� there must be two, one
in �x � a� x� (a� b)/2� and one in �x � (a� b)/2� x� b�. The
argument may be repeated.

8 By qn 7, T is dense on the number line. If m/2� were smallest, m/2���

would be smaller. Contradiction. Likewise if a were smallest, a/2 would
be smaller. Contradiction.

9 m/2�	 (m · 5�)/10�. Since T is dense and D contains T, D is dense.
�
�
	 �

��
. �
�
	m/2�� 5m	 2� � 2 is the only prime factor of 5m.

Contradiction.

(i) (ii) (iii) Yes.
(iv) No, (m/2�)/(k/2�)	m/k, both m and k may be odd.

Same answers for D.

10 All terms of the sequence in T by qn 9 parts (i), (ii) and (iii).

11 �
�
	m/10�� 3m	 10�, so 2 and 5 are the only prime factors of 3m.

Contradiction.
([10�/3]/10�)	 0.3, 0.33, 0.333, 0.3333, . . .

12 a
�
	decimal point followed by n 9s. So 10�a

�
	 10�� 1, and

a
�
	 1� 1/10�.

Thus � a
�
� 1 � 	 1/10�, and (a

�
� 1) is a null sequence.

13
a
��

	
13

100
·�1�

1

10�
�

1

10

� . . .�

1

10�����

	
13

100
·

1�
1

10��

1�
1

10�

	
13

99
· �1�

1

10��� .
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Since the sequence is monotonic increasing, the limit of the sequence is
the limit of (a

��
).

14

1/10�� 1/10� � . . .� 1/10��	
1

10�
·

1�
1

10��

1�
1

10�

	
1

999
·�1�

1

10��� .

a	 12.45, b	 6.78.

With a recurring block of length l, the infinite decimal will be the limit
of a sequence with nth term

a� b�
1

10�
�

1

10��
� . . .�

1

10���	 a�
b

10�
·

1�
1

10��

1�
1

10�

	 a�
b

10�� 1�1�
1

10��� .
If a and b are terminating decimals, the sequence with this as nth term
has a rational limit.

15 If A and B are integers and A/B is not equal to a terminating decimal,
the long division of A by B will not terminate. The remainder at each
stage of the division is one of the numbers 1, 2, . . .,B� 1. Since the
process is endless, the remainders must recur and thus the dividends
will recur.

16 If the first digits to differ are d
�
and e

�
, then we suppose d

�
� e

�
and so

d
�
� 1� e

�
.

Now 0.00 . . . 0d
���
d
���

. . . d
���

� (1/10�)(1� 1/10�), with equality only
when each d

���
	 9, so x� d

�
.d

�
d
�
. . . (d

�
� 1). But also e

�
.e
�
e
�
. . . e

�
� x

since an infinite decimal sequence is monotonic increasing. Thus
e
�
.e
�
e
�
. . . e

�
�x� d

�
.d

�
d
�
. . . (d

�
� 1). So

x	 e
�
.e
�
e
�
. . . e

�
	 d

�
.d

�
d
�
. . . (d

�
� 1) and e

���
	 0, d

���
	 9 for all i.

17 Every rational number is equal to a terminating or recurring decimal.
The infinite decimal given here is neither terminating nor recurring, so
if it converges it does not converge to a rational number.

18 In the prime factorisation of both p� and q�, all primes occur to an
even power. So 2 appears to an even power in p� and to an odd power
in 2q�, so p�	 2q� contradicts the fundamental theorem of arithmetic.
Likewise �3, �6 and ��2 cannot be rational numbers.

19 If a� b�2	 x were rational, then (x� a)/b	�2 would also have to
be rational. Contradiction.
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20 If (a� b�2)/(1� �2)	x, then (a� x)/(x� b)	 �2, so x cannot be
rational.

21 Suppose that there are integers p and q such that log
��
2	 p/q, then

10���	 2, so 10�	 2�, and 5 divides the left-hand side but not the
right-hand side, contradicting the fundamental theorem of arithmetic.

22 The new decimal will be different from the others above it if each entry
differs from the diagonal entry above it.

23 Constructed sequence of infinite decimals

0. a
��

a
��

a
��

a
�


a
��

a
��

. . .
0. a

��
a
��

a
��

a
�


a
��

a
��

. . .
0. a

��
a
��

a
��

a
�


a
��

a
��

. . .
0. a


�
a

�

a

�

a




a

�

a

�

. . .
0. a

��
a
��

a
��

a
�


a
��

a
��

. . .
. . . . . . . . . . . . . . . . . . . . . . . .
0. a

��
a
��

a
��

a
�


a
��

a
��

. . .
. . . . . . . . . . . . . . . . . . . . . . . .
new infinite decimal
0. b

�
b
�

b
�

b



b
�

b
�

. . .

Choose b
�
different from 0, 9 and a

��
.

Choose b
�
different from 0, 9 and a

��
.

Choose b
�
different from 0, 9 and a

��
.

. . .
Choose b

�
different from 0, 9 and a

��
.

By avoiding 0 and 9, unwitting duplication is avoided. By avoiding a
��

a new infinite decimal is guaranteed.

24 0, �1, �1, �2, �2, �3, �3, . . .
0, 1, 2, 3, 4, . . .� 1, 2, 4, 8, 16, . . .
�1, �2, �3, . . .� 6, 12, 24, . . .

So sequence built from increasing natural numbers is 0, 1, 2, �1, 3,
�2, 4, . . .

25 positive a/b

b � a� 1 2 3 4

1 6 12 24 48

2 18 36 72 144

3 54 108 216 432

4 162 324 648 1296

Sequence �
�
, �
�
, �
�
, �
�
, [�

�
], 


�
, �
�
, �
�
, . . .
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negative a/b

b � a� 1 2 3 4

1 30 60 120 240

2 90 180 360 720

3 270 540 1080 2160

4 810 1620 3240 6480

Sequence of non-zero rationals: �
�
, �
�
, �
�
, �
�
, ��

�
, [2/2], 


�
, �
�
, ��

�
, �
�
, ��

�
, �
�
,

. . .

26 1� �2, 2� �2, �
�
� �2, 3� �2, 1� 2�2, 1��

�
�2, . . .

27 Z, T, D, and Q are countably infinite. The set of infinite decimals is
not.

28 All of N is deleted. The total length removed is 2 units.

29 All of N is deleted. The total length removed is 2
 units. 
 may be as
small as we wish. So N occupies no length.

30 All of (a
�
) is deleted with a total length of 2
 units. The length is

arbitrarily small, so a sequence (a countably infinite set of numbers)
does not occupy length on the line.
Since the rationals are countably infinite, so are the infinite decimals
equal to rationals between 0 and 1. If a sequence of these infinite
decimals was used the new decimal constructed would be irrational.

31 The sequence is monotonic increasing. Every term is a terminating
decimal and therefore rational. 0.2, 0.13, 0.124, 0.1235 etc. are all upper
bounds for the sequence.

32 Apply the sum rule (3.54(iii)), the difference rule (3.54(v)), the product
rule (3.54(vi)) and the quotient rule (3.67) to the infinite decimal
sequences.

33 The first term of an increasing sequence is a lower bound. The first
term of a decreasing sequence is an upper bound.

34 (i) [L]. (ii) [a
�
]� 1.

(iii) Yes. Observe the finite number of integers between (i) and (ii).
(iv) Since t

�
is a lower bound and t

�
� 1 is not, we can argue as in

(iii).
(v) Argue as in (iii).
(vi) (t

�
) is an infinite decimal sequence which converges by the

completeness principle.
(vii) The limit is a

�
�D by the difference rule (3.54(v)). Since t

�
is a
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lower bound for (a
�
), the terms of the sequence are non-negative.

Use 3.75.
(viii) t

�
is a lower bound for (a

�
) while t

�
� 1/10� is not, so there are

terms of the sequence (a
�
) between these numbers, e.g.

t
�
�D� a

�
� t

�
� 1/10��D� 1/10�, for some value of n and

since (a
�
) is decreasing, for all subsequent n.

(ix) (viii) implies that 0� a
�
�D� 1/10� for sufficiently large n. Given


� 0, 
� 1/10� for some i, so (a
�
)�D by definition.

35 If (a
�
) is monotonic increasing and bounded above, then (�a

�
) is

monotonic decreasing and bounded below. From qn 34 (�a
�
)�A, say,

so (a
�
)� �A.

36 The sequence is convergent from qn 35. The limit is between 2 and 3
by the closed interval property, qn 3.78. In qn 11.32 we will see that
the limit is e.

37 a�x� � a/x� x� a/x� �
�
(x� a/x)�x� (�

�
(x� a/x))��x� and

0� (x� a/x)�� a� (�
�
(x� a/x))�. (x

�
) is monotonic decreasing and

bounded. Let (x
�
)� l. Apply the sum rule (3.54), the scalar rule (3.54)

and the reciprocal rule (3.65) to obtain l	 �
�
(l� a/l), and thus l�	 a.

Because the terms are positive l	 �a.

38 (a
�
) is increasing, (b

�
) is decreasing, so both are convergent by qns 34

and 35. For the sequences of 2.38, 2.38(iii) implies that (b
�
� a

�
) is a

null sequence, so by the difference rule the sequences have the same
limit. In the case of the sequences of 2.39, the property
b
���

� a
���

� �


(b

�
� a

�
) implies that b

���
� a

���
	 (�



)���(b

�
� a

�
) and

so (b
�
� a

�
) is a null sequence, and the sequences have the same limit.

39 If �a exists for all positive real a, then ��a etc. exist.

40 (i) (a
�
) is increasing and bounded above.

(ii) (b
�
) is decreasing and bounded below.

(iii) b
���

� a
���

	 (�
�
)�(b

�
� a

�
), so the difference rule makes the limits

equal.
(iv) Repeated use of product rule.
(v) Difference rule.
(vi) 0� c� a

�
� � b

�
� � a

�
�.

(vii) By difference rule.

41 (i) The sequence is decreasing and bounded below by 0, so it is
convergent by qn 34.

(ii) n( ��(1/a)� 1)	 n(1� ��a)/ ��a.
(iii) ��(ab)� 1	 ( ��a� 1) · ��b� ( ��b� 1).

In chapter 11 we will find that lim n( ��a� 1)	 log
�
a.

42 (i) a
�
� a

�
� . . .� a

�
� b

�
� . . .� b

�
� b

�
.
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(ii) (a
�
) is monotonic increasing and bounded above by b

�
.

(b
�
) is monotonic decreasing and bounded below by a

�
.

(iii) Let (a
�
)� a and (b

�
)� b. Then by the inequality rule (3.76) a� b.

By 3.80 (b) a
�
� a and by analogy b� b

�
for all n, so

a
�
� a� b� b

�
. Thus any c such that a� c� b, lies in all the

[a
�
, b

�
].

(iv) Suppose c was in all the intervals. Consider n� 1/c.

43 (i) [�1,�1], even terms constant, so this subsequence is
convergent.

(ii) [�2,�2], subsequence of even terms (1� 1/2n)� 1.

44 Convergent�bounded, but not conversely by qn 43.

45 All terms within [0, 1]. 0.1, 0.10, 0.100, etc.� 0.1; 0.1, 0.11, 0.111,
0.1111, etc.� �

�
.

47 The infinite decimal sequence for �2 is a bounded sequence of
terminating decimals, that is, of rational numbers. From qn 3.80, if any
subsequence is convergent, it is convergent to �2. So if the
completeness principle is not adopted, qn 46 can fail.

48 Choose positive 
 � �


��

�
	 �

��
, say 
 	 �

��
.

49 � �
�
� 1/n � 	 � (2n� 7)/7n �� �

��
. Take 
 	 �

��
.

50 �
�
, �
�
and �



are cluster points. �

�
and �

�
are not.

51 No. Can take 
 � shortest distance between two points in the set.

52 Z.

53 (i) Choose any a
�
in A. Now choose a

�
in A but different from a

�
.

Construct the sequence by choosing a new point in A for each
successive term.

(ii) L � a
�
�U.

(iii) By qn 46.
(iv) a need not be in A, but L � a�U by the closed interval

property (3.78).
(v) Given 
 � 0, there is an N such that n

�
�N� � a

��
� a � � 
.

54 Each term in the infinite decimal sequence for �2 lies in the interval
[1, 2]. If is a rational number in [1, 2] and we choose 
 such that
0� 
�� q� �2 � then an 
-neighbourhood of q contains at most a
finite number of terms of the sequence.

55 If n�N� � a
�
� a �� 
/2, then also � a

���
� a �� 
/2.

56 d
�
.d

�
d
�
. . . d

���
� d

�
.d

�
d
�
. . . d

�
	 0.00 . . . 0d

���
d
���

. . . d
���� (1/10�)(1� 1/10�), so � a

���
� a

�
�� 1/10�.
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57 Suppose n�N� � a
���

� a
�
� � 1, then the sequence is bounded above

by max(a
�
, a

�
, . . ., a

���
, a

�
� 1) and bounded below by

min(a
�
, a

�
, . . ., a

���
, a

�
� 1). Now (a

�
) is a Cauchy sequence, so given


� 0, there is an N
�
and an N

�
such that n

�
�N

�
� � a

����
� a

��
� � �

�

,

and n
�
�N

�
� � a

��
� a � � �

�

, so for any

n
�
�max(N

�
,N

�
), n� n

�
� � a

�
� a �� 
.

58 With the given inequalities, all the later terms of the sequence lie
between a

�
and a

���
, so � a

���
� a

�
� � 1/n, and the sequence is a

Cauchy sequence.

59 The greatest member is 4. Any finite set of numbers, which is not
empty, has a greatest member. 1.

60 (i) (a) Yes. (b) No.
(ii) (a) Yes. (b) No.

61 UB� 2 except for (v), (vi) and (viii).

62 Not for 61(vi) or (viii). Is for 61(v).

63 Suppose u and v are least upper bounds for A, and v� u, then v is
not a least upper bound by definition (ii).

64 If not, then (supA)� 
 is an upper bound and so supA is not least.
So there is an a

�
� (supA� 1, supA] with a

�
�A. But if

supA �A, a
�
� (supA� 1, supA), and then there is an a

�
� (a

�
, supA)

with a
�
�A, and an a

�
� (a

�
, supA), etc.

65 Now suppose there is an upper bound v with v� u. Taking 
	 u� v,
there is an a such that u� 
� a� u, and thus v� a� u. So v is not
an upper bound and u	 supA.

66 Since (a
�
)� a, for any 
 � 0, � a

�
� a �� 
 for sufficiently large n, or

a� 
 � a
�
� a� 
. From qn 3.80 (b), a

�
� a for all n, so a is an upper

bound for �a
�
� n � N� and a� 
� a

�
� a, for sufficiently large n. By qn

65, a	 sup�a
�
� n � N�.

68 (a) Yes, (b) no.

69 �x � 0� x� 1�.

70 Can find lower bound� 0 for (v), (vi), (viii).

71 If there were two, then the greater of the two would not be a lower
bound.

72 If not, infA� 
 would be a lower bound.

73 If l is not the greatest lower bound, then there is a lower bound m with
l�m. Now let 
	m� l, and there is an a such that
l� a� l� 
 	m, so m is not a lower bound and l	 infA.
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74 For all a, a� supA��supA��a, and �supA is a lower bound
for B.
For any 
� 0, there is an a �A such that supA� 
� a� supA,
so that �supA� �a��supA� 
, and by qn 73, infB	�supA.

75 (i) If g were greatest, then g/2 would be greater!
(ii) If g were greatest, (g� 10)/2 would be greater!

76 All positive numbers and 0 are upper bounds for the set of negative
numbers. The least is 0.

77 Answer as 76.

78 (�a
�
) is monotonic increasing with limit �a, so �a	 sup��a

�
� n � N�

by qn 66. Now a	 inf�a
�
� n � N� by qn 74.

79 By qn 66, the least upper bound of the terms of an infinite decimal
sequence is the infinite decimal. So if every non-empty set of real
numbers which is bounded above has a least upper bound, then every
infinite decimal sequence is convergent.

80 (i) The sequence (l
�
) is monotonic increasing and bounded above by

u
�
.

(ii) The sequence (u
�
) is monotonic decreasing and bounded below by

l
�
.

(iii) u
���

� l
���

	 (�
�
)�(u

�
� l

�
), so by the difference rule, the limits are

equal.
(v) Since l

�
is not a upper bound for X and s is, there is an x with

l
�
�x� s, for every n. Now (l

�
)� s, so given 
 � 0, � l

�
� s �� 


for sufficiently large n, and s� 
 � l
�
� x� s. So s	 supX by qn

65.

81 A non-empty set of real numbers which is bounded below has a
greatest lower bound.

82 infA� infB� supB� supA. Can take A	 �x � 0� x� 1� and
B	 �x � 0� x� 1�.

83 (i) (a
�
) is bounded, qn 46.

(ii) By the closed interval property, qn 3.78.
(iii) By qns 80 and 81.
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84

-0.5

-1

-1.5

-2

1.5

1

0.5

5 10 15 20

lim sup

lim inf

(ii) All terms between �2.
(iv) a

��
	 1� 1/2n. (a

��
)� 1.

(v) sup	 �
�
. inf	 �2.

(vi) u
�
	 1�

�
, u

�
	 1�

�
, u

�
	 1�



, u



	 1�



. l

�
	 �2, l

�
	 �1�

�
, l

�
	�1�

�
,

l


	 �1�

�
.

(vii) �a
�
� k� 1� n���a

�
� k� n� and qn 82.

(ix) lim sup a
�
	 1, lim inf a

�
	�1.
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5

Series
Infinite sums

Preliminary reading: Cohen, D., Northrop ch. 7, Nelsen, R. B.
Concurrent reading: Ferrar.
Further reading: Rudin, ch. 3, Knopp.

Sequences of partial sums

1 Criticise the following argument:

if S	 1�x�x�� x�� . . .,
then xS	x�x� �x�� x
� . . .,
so S�xS	 1,

and therefore S	
1

1�x
.

Try putting x	 2!

If the argument in qn 1 were sound we could put x	�1 and obtain
the sum of the series

1� 1� 1� 1� 1� . . .

to be �
�
. But the same series could be plausibly thought to have a sum

of 0 —

(1� 1)� (1� 1)� (1� 1)� . . .

— or a sum of 1:

1� (�1� 1)� (�1� 1)� (�1� 1)� . . .

These paradoxical conclusions show that great care must be used in
arguing with infinite sums. The ordinary associative law for finite sums,
a� (b� c)	 (a� b)� c, does not lead to a clear answer.
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2 For x� 1, let s
�
	 1�x�x� � . . .�x���, a sum of only n terms.

By considering x · s
�
� s

�
, prove that s

�
	 (x�� 1)/(x� 1).

Compare this with qn 1.3(vi). It is also conventional to write s
�
, as

defined in the first line, in the form

���
�
���

x��� or
�����

�
���

x�.

3 By decomposing 1/r(r� 1) into partial fractions, or by induction,
prove that

1

1 · 2
�

1

2 · 3
� . . .�

1

n(n� 1)
	 1�

1

n� 1
.

Express this result using the � notation.

4 If s
�
	

���
�
���

1

r(r� 1)
, prove that (s

�
)� 1 as n��.

This result is also written
�
�
���

1

r(r� 1)
	 1.

When discussing whether the series

a
�
� a

�
� a

�
� . . .� a

�
� . . .

has a sum, we construct the sequence (s
�
) thus:

s
�
	 a

�
,

s
�
	 a

�
� a

�
,

s
�
	 a

�
� a

�
� a

�
,

. . .
s
�
	 a

�
� a

�
� a

�
� . . .� a

�
,

. . .

and so on.

The sequence (s
�
) is called the sequence of partial sums of the series.

When the sequence (s
�
) is convergent to s we say that the series is

convergent to s, or has the sum s. Symbolically, the series � a
�
is said to

be convergent when the sequence of partial sums (s
�
), defined by

s
�
	

���
�
���

a
�

is convergent. When (s
�
)� s as n��, we write

�
�
���

a
�
	 s,

and we say that the series has the sum s.
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5 Write down a formula for � ���
���

(�
�
)��� and find the sum ��

���
(�
�
)���.

So, if you go half way, and then half of what is left, and then half
again, and so on, do you ever get there?

6 Find the sum ��
���

( �
��

)�. What recurring decimal have you
evaluated?

7 Construct an infinite decimal equal to �
��
.

8 Find the sum ��
���

( �
��
)�.

9 Use qn 2 to determine whether the series � x� is convergent when

(i) �x � � 1,
(ii) �x � � 1.

Also examine the two cases x	 1 and x	�1.

1
1   x

1 x x 2

10 (Oresme, c. 1350) If s
�
	� ���

���

r

2�
show by induction or otherwise

that s
�
	 2� (n� 2)/2�.

Use qn 3.74 to deduce that (s
�
)� 2 as n��. Compare with qn

1.3(vii).
Oresme considered � �

�
1/2� �� �

�
1/2�� ��

�
1/2�� . . ..

There is a geometrical description of Oresme’s proof in Kopp, p.
18.

Any series which is not convergent is said to be divergent. The partial
sums of a divergent series need not ‘diverge’ to �� but may oscillate,
as with � (�1)�. When all the terms of a series are positive, the sequence
of partial sums is monotonic increasing: so, if the sequence is bounded,
the series is convergent; and, if it is not bounded, the series tends to
��. See qn 25.
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The null sequence test

When discussing the series, there are two sequences, (a
�
) and (s

�
), which

we will look at. The relationship between these two sequences has one
straightforward aspect.

11 Suppose that the series � a
�
is convergent, and that its sequence of

partial sums (s
�
)� s as n��. Use the equation a

���
	 s

���
� s

�
and the difference rule, qn 3.54(v), to prove that (a

�
) is a null

sequence.

So � a
�
convergent� (a

�
) is null. So what happens if (a

�
) is not null?

Clearly � a
�
cannot be convergent, if we wish to avoid a contradiction.

So we can say (a
�
) is not null�� a

�
is divergent. This is the null

sequence test.
The argument here goes from (P�Q) to (not Q� not P).

Repeating this argument gets you from (not Q� not P) to (P�Q). So
(P�Q)� (not Q� not P).
(not Q�not P) is called the contrapositive of (P�Q).

12 By considering when the sequence (x�) is not null, use qn 11 to
check your claims of divergence in qn 9.

13 Is there a positive real number � such that � n� is convergent?

Simple consequences of convergence

14 If the series a
�
� a

�
� a

�
� . . .� a

�
� . . . is convergent to the sum s,

what can you say about the series a
�
� a

�
� a



� . . .� a

���
� . . .?

Write your claim with the � notation. Write a proof taking s
�
as

the nth partial sum of the first series and t
�
as the nth partial sum

of the second. Now consider the converse problem. Suppose that
a
�
� a

�
� a



� . . .� a

���
� . . . is convergent to the sum t, what

can you say about the series a
�
� a

�
� a

�
� . . .� a

�
� . . .? Write

your claim with the � notation and prove it. As a result of your
work, you should have proved that ��

���
a
�
is convergent if and

only if ��
���

is convergent.

15 Prove that ��
���

a
�
is convergent if and only if ��

���
a
�
is convergent.

16 The start rule
Prove that ��

���
a
�
is convergent if and only if ��

���
a
�
is convergent.

This proves that � a
�
is not an ambiguous symbol if it is only

convergence which is at stake. It is an ambiguous symbol if the sum is
to be found.
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17 If ��
���

a
�
	 s, and s

�
is the nth partial sum of this series, find a

value for ��
���
a
�
and prove that this tends to 0 as n��.

18 Write down the claim that a sequence of partial sums (s
�
) is a

Cauchy sequence. From the General Principle of Convergence (qn
4.57) this is equivalent to its convergence. Interpret this claim for
the infinite series from which the partial sums were formed.

19 The scalar rule
For a given real number c� 0, prove that � c · a

�
is convergent if

and only if � a
�
is convergent.

20 Use questions 9 and 19 to determine exactly which geometric series
are convergent and which are divergent.

21 The sum rule
If � a

�
and � b

�
are convergent, prove that � (a

�
� b

�
) is convergent.

22 (a) If � a
�
is convergent, is � a

�
convergent?

(b) If s
�
is the nth partial sum of the series

a
�
� a

�
� a

�
� . . .� a

�
� . . .

which of the following is equal to s
�
?

(i)
�
�
�

a
�
, (ii)

���
�
���

a
�
, (iii) � a

�
, (iv)

�
�
���

a
�
.

Summary – convergence of series

Definition of convergence of series
For any sequence (a

�
), the nth partial sum

s
�
	 � ���

���
a
�
may be constructed. When (s

�
)� s,

the series � �
���

a
�
(or briefly � a

�
) is said to be

convergent and to converge to the sum s. A
series which is not convergent is said to be
divergent.

The start rule
qn 16 ��

���
a
�
is convergent if and only if

��
���

a
�
is convergent.

The scalar rule
qn 19 � a

�
is convergent if and only if � c · a

�
is

convergent, for some non-zero constant c.
The sum rule

qn 21 If � a
�
and � b

�
are convergent, then � (a

�
� b

�
)

is convergent.
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The null sequence test
qn 11 If (a

�
) is not a null sequence, then � a

�
is

divergent.
Convergence of geometric series

qns 2, 9 When �x � � 1, ��
���

x�	 1/(1� x).

Series of positive terms

First comparison test

23 Let e
�
	 1� 1 � 1/2!� 1/3!� . . .� 1/n!,

and let s
�
	 1� 1��

�
��



� . . .� 1/2���, with n� 1.

Prove that e
�
� s

�
	 3� 1/2���.

Deduce that the sequence (e
�
) is monotonic increasing, bounded

above and so convergent. We say (e
�
)� e. [The relation between

this e and qn 4.36 is established in 11.28 and 11.32.]

24 Prove that e is irrational. Suppose that e is rational	 p/q, in lowest
terms. Show that e� e

�
	 k/q! for some integer k. Check that q� 2,

and deduce that e� e
�
� (1/q!) · �

�
, contradicting the previous result

and showing that the hypothesis, of rational e, is false.

25 If a
�
� 0 for all n, prove that the sequence of partial sums of the

series � a
�
is monotonic increasing. Deduce that � a

�
is convergent

if and only if its partial sums are bounded.

26 The first comparison test
The result of qn 25 leads to a squeeze theorem for series of positive
terms.
If 0� a

�
� b

�
, and � b

�
is convergent, show that the partial sums of

� a
�
are bounded and deduce that � a

�
is convergent.

Contrapositively, if � a
�
is divergent, show that the partial sums of

� b
�
are unbounded and so � b

�
is divergent.

27 Use the fact that

0�
1

(n� 1)�
�

1

n(n� 1)
,

and qns 4 and 26 (the first comparison test), to prove that
� 1/(n� 1)� is convergent.
Deduce from qn 14 that � 1/n� is convergent. (The sum of this
series is ��/6. Pólya (1954), p. 19, gives a remarkable justification of
this due to Euler.)
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28 Let a
�
	 �(n� 1)��n, and let b

�
	 1/�n.

What is the partial sum of the first hundred terms of the series
� a

�
?

(i) Use qn 25 and qn 3.20 to prove that � a
�
is divergent.

(ii) Prove that a
�
	 1/(�(n� 1)��n).

(iii) Prove that 0� a
�
� �

�
b
�
.

(iv) Use the first comparison test, qn 26, and the scalar rule, qn
19, to prove that � b

�
is divergent.

So, although (b
�
) is a null sequence, � b

�
is divergent. Rather

disconcertingly, this establishes that the converse of qn 11 (the null
sequence test) is false. So do not fall into the trap of thinking that
� b

�
must be convergent when (b

�
) is null.

29 Use the first comparison test (qn 26), and qns 27 and 28 to show
that � 1/n� is convergent when �� 2 and divergent when 0� � � �

�
.

The harmonic series

30 For the series

1�
1

2
�

1

3
�

1

4
� . . .�

1

n
� . . .,

let s
�
denote the sum of the first n terms. For each n, show that

s
��

� s
�
�
n

2n
	

1

2
.

Write down these inequalities for n	 1, 2, 4, 8, . . ., 2���, and add
them to prove that

����
�
���

1

r
� 1��

�
n.

Is � 1/n convergent or divergent?

The convergence of � 1/n�
31 For what values of the positive real number � can you be sure that

the series � 1/n� is divergent? Just use the first comparison test (qn
26) and qn 30 at this stage.

32 In qn 29 we proved that the series � 1/n� was convergent when
�� 2, and in qn 31 we saw that this series is divergent when �� 1.
We have not yet examined the convergence of � 1/n� for values of �
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between 1 and 2. Let 1��� 2. Let s
�
denote the sum of the first n

terms of the series

1�
1

2�
�

1

3�
�

1

4�
� . . .�

1

n�
� . . ..

Verify that s
����

� s
���

�
n

n�
.

Write down these inequalities for n	 2, 4, 8, . . ., 2� and add them to
show that

��������
�
���

1

r�
� 1�

2

2�
�

4

4�
� . . .�

2�

2��
	

1� (1/2���)���

1� (1/2���)
,

using qn 2 for the equality.
Show that � � 1 implies 1/2���� 1.
Deduce that the partial sums of � 1/r� are bounded and so the
series is convergent. This proof holds for all real � � 1.

Cauchy’s nth root test

33 Use the fact that n/(2n� 1)� �
�
and the first comparison test (qn

26) to prove that the series � (n/(2n� 1))� is convergent.

34 If n� 3, prove that

4n�

5n�� 2
�

36

43
,

and using the start rule (qn 16) and the first comparison test (qn 26)
deduce that the series � (4n�/(5n�� 2))� is convergent.

10 k    ε k k + ε

35 Cauchy’s nth root test
To generalise the results of qns 33 and 34, we suppose that we have
a series of positive terms, � a

�
, for which the sequence ( ��a

�
)� k as

n��, and that 0� k� 1. By choosing 
	�
�
(1� k), show that for

sufficiently large n, a
�
��� where �	 k� 
	�

�
(1� k)� 1. Deduce

from the start rule (qn 16) and the first comparison test (qn 26) that
� a

�
is convergent.

36 Apply Cauchy’s nth root test to the series � n/2� (compare with qn
10), and to the series � n�(0.8)�.
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37 If ��a
�
� 1 for all n, prove that � a

�
is divergent.

38 A series of positive terms � a
�
is given, for which the sequence

( ��a
�
)� k as n� �, where 1� k. Prove that the series is divergent.

39 By considering the two series � 1/n and � 1/n�, show that Cauchy’s
nth root test gives no information about the convergence of the
series, when k	 1 in qn 38.

d’Alembert’s ratio test

40 Let a
�
	 n�/2�. Prove that if n� 3, then a

���
/a

�
� �

�
. By using this

inequality when n	 3, 4, 5, . . . prove that a
���

� (�
�
)�a

�
. Use question

20 (geometric series) and the first comparison test to show that
� a

���
is convergent. Then use the start rule (qn 16) to prove that

� a
�
is convergent.

41 Let a
�
	 n�(0.8)�. Prove that if n� 14, then a

���
/a

�
� 0.99. Use

arguments like those in qn 40 to prove that a
���


� (0.99)�a
�

.

Deduce that � a
�
is convergent.

42 To generalise the results of qns 40 and 41, we suppose that we have
a series � a

�
of positive terms for which

0� a
���

/a
�
�� � 1, for all n.

Show that a
���

��� · a
�
. Use geometric series (qn 20) and the first

comparison test to prove that � a
�
is convergent.

10 k    ε k k + ε

43 d’Alembert’s ratio test, with qn 47
Suppose that � a

�
is a series of positive terms and the sequence of

ratios (a
���

/a
�
)� k� 1. By a suitable choice of 
 � 0 (what 
?),

show that there exists an N such that

n�N� a
���

/a
�
� �

�
(k� 1)� 1.

Let � 	�
�
(k� 1), and apply qn 42 and the start rule (qn 16) to

prove that � a
�
is convergent.

44 Prove that � 2�/n! is convergent.

45 Prove that � n!/n� is convergent.

46 Suppose that we have a series of positive terms � a
�
for which

1� a
���

/a
�
for all n. Prove that a

�
� a

�
for all n. Deduce that (a

�
)

is not a null sequence and so � a
�
is divergent.
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47 with qn 43, d’Alembert’s ratio test

Suppose that we have a series of positive terms � a
�
for which the

sequence of ratios (a
���

/a
�
)� k� 1. By a suitable choice of 
� 0

(what 
?), show that there exists an N such that
n�N� 1� �

�
(1� k)� a

���
/a

�
.

apply question 46 and the start rule (qn 16) to show that � a
�
is

divergent.

48 For which positive real numbers x is the series � (2x)�n� convergent
and for which is it divergent? Use both d’Alembert’s ratio test and
Cauchy’s nth root test.

It is important to note that d’Alembert’s ratio test (qns 43 and 47) gives
no information about the convergence of � a

�
when (a

���
/a

�
)� 1. So, in

particular, d’Alembert’s ratio test gives no information about the
convergence or divergence of � 1/�n, � 1/n or � 1/n�.

49 Give an example to show that the condition 0� a
���

/a
�
� 1 is not

sufficient to ensure the convergence of the series � a
�
.

50 By considering the sequence defined by a
����

	 1/(2n)� and
a
��

	 1/(2n)�, show that a series � a
�
may be convergent even when

the sequence (a
���

/a
�
) is unbounded.

Second comparison test

51 If a
�
	

	n� 1

n�� 2
and b

�
	

1

n���
,

prove that (a
�
/b

�
)� 1 as n��.

Deduce that for some N, n�N� �
�
� a

�
/b

�
� �

�
.

Now use the convergence of � b
�
to establish the convergence of

� 3/2b
�
(with the scalar rule, qn 19) and thus the convergence of

� a
�
.

52 If a
�
	

	n� 1

n� 2
and b

�
	

1

	n
,

prove that (a
�
/b

�
)� 1 as n��.

Deduce that for some N, n�N� �
�
� a

�
/b

�
� �

�
. Now use the

divergence of � b
�
to establish divergence of � �

�
b
�
(with the

contrapositive of the scalar rule, qn 19) and deduce the divergence
of � a

�
.

113Series of positive terms



53 Second comparison test
Let � a

�
and � b

�
be two series of positive terms for which

0�m� a
�
/b

�
�M, for all n.

If � a
�
is convergent, prove that �m · b

�
is convergent and deduce

that � b
�
is convergent.

If � b
�
is convergent, prove that �M · b

�
is convergent and deduce

that � a
�
is convergent.

Thus � a
�
and � b

�
are both convergent or both divergent.

54 If a
�
	 1/n� and b

�
	 1/n, prove that 0� a

�
/b

�
� 1.

Why does the convergence of � a
�
and the divergence of � b

�
not

contradict the second comparison test?

55 Limit version of the second comparison test
Let � a

�
and � b

�
be two series of positive terms for which

(a
�
/b

�
)� l� 0 as n��.

By a suitable choice of 
� 0 (what 
?) show that there exists an N
such that n�N� 0� �

�
l� a

�
/b

�
� �

�
l. By using the second

comparison test and the start rule (qn 16) prove that � a
�
and � b

�
are both convergent or both divergent.

Integral test

This section uses the notion of integral, which is discussed formally in
chapter 10, and the logarithm function, which is discussed formally in
chapter 11. Sixth-form notions of integrals and logarithms are
sufficiently reliable to answer qns 56—61.

1
n + 1

1
n 

n n + 1

56 Sketch the graph of f (x)	 1/x for positive x.

114 5 Series



Why is
1

n� 1
��

���

�

dx

x
�

1

n
?

Prove that
���
�
���

1

r
��

�

�

dx

x
�

�����
�
���

1

r
.

Let s
�
	

���
�
���

1

r
. Prove that

1

n
� s

�
� log

�
n� 1.

Let D
�
	 s

�
� log

�
n. Calculate some values of D

�
, using a computer

if possible.

Show that D
�
�D

���
	�

���

�

dx

x
�

1

n� 1
.

Deduce that (D
�
) is a monotonic decreasing sequence of positive

terms and so has a limit. The limit, in this case, is usually denoted
by �, and is known as Euler’s constant. Its value is slightly greater
than 0.577.
Let E

�
	 s

�
� log

�
(n� 1). Check that (E

�
) is an increasing sequence,

that (D
�
�E

�
) is a null sequence (so that (D

�
) and (E

�
) have the

same limit), and illustrate an area equal to E
�
on a graph.

1

f (1)

f (2)
f (3)

2 3 4 5 6

57 The integral test
Let f (x)� 0, where f is a decreasing function for x� 1. What may
be said about the sequence ( f (n))? Is it necessarily convergent? Since
f is monotonic, f is integrable, see qns 10.7 and 10.8. Why is

f (n� 1)��
���

�

f (x)dx� f (n)?

Deduce that
���
�
���

f (r)��
�

�

f (x)dx�
�����

�
���

f (r).
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Let s
�
	

���
�
���

f (r). Prove that 0� f (n)� s
�
��

�

�

f (x)dx� f (1).

If lim
���

�
�

�

f (x)dx exists, prove that � f (n) is convergent.

If � f (n) is convergent, prove that lim
���

�
�

�

f (x)dx exists.

(58) Prove that
�
�
���

1

n�
� 2. Compare with qn 27.

(59) Prove that 2�n� 2�
���
�
���

1

	r
� 2�n� 1.

60 (Abel, 1828) Prove that � 1/(n log n) is divergent for n� 2.

61 With the notation of qn 57, let D
�
	 s

�
��

�

�

f (x)dx.

Prove that D
�
�D

���
	�

���

�

f (x)dx� f (n� 1)� 0.

Deduce that (D
�
) is convergent. Notice that this result holds

whether � f (n) is convergent or divergent.

Summary – series of positive terms

First comparison test
qn 26 If 0� a

�
� b

�
, for all n, and � b

�
is convergent,

then � a
�
is convergent. If � a

�
is divergent then

� b
�
is divergent.

Theorem
qns 30, 32

� 1/n� is convergent when �� 1 and divergent
when �	 1.

Cauchy’s nth root test
qns 35, 38 If 0� a

�
and ( ��a

�
)� k, then � a

�
is convergent

when k� 1 and divergent when k� 1.
d’Alembert’s ratio test

qns 43, 47 If 0� a
�
and (a

���
/a

�
)� k, then � a

�
is

convergent when k� 1 and divergent when
k� 1.

Second comparison test
qn 53 If 0� a

�
, 0� b

�
and 0�m� a

�
/b

�
�M, for all

n, then � a
�
and � b

�
are both convergent or

both divergent.
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Limit form of second comparison test
qn 55 If 0� a

�
, 0� b

�
and (a

�
/b

�
)� l� 0, then � a

�
and � b

�
are both convergent or both divergent.

Integral test
qn 57 If, for x� 1, f (x) is a decreasing positive

function, then � f (n) is convergent if and only if

�
�

�

f (x)dx exists.

Series with positive and negative terms

Alternating series test

0.5

0.6

0.7

0.8

0.9

1

5 201510
n

nS

62 From our knowledge of � 1/n we might expect the series

1�
1

2
�

1

3
�

1

4
�

1

5
� . . .�

(�1)���

n
� . . .

to be divergent.
However, if we let the nth partial sum s

�
	� ���

���
(�1)���/r, and

examine s
�
, s



� s

�
, s

�
� s



, we can see that all these are positive.

Prove that s
����

� s
��

is positive.
Deduce that the sequence (s

��
) is strictly increasing.

Likewise, if we examine s
�
� s

�
, s

�
� s

�
, these are negative. Prove

that s
����

� s
����

is negative.
Deduce that the sequence (s

����
) is strictly decreasing.

The proposition

s
�
� s

��
�

1

2n� 1
	 s

����
� s

�
,
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shows that s
��

� s
����

when m	 n. Establish this inequality when
m� n and when m� n, to show that every even partial sum is less
than every odd partial sum. Deduce that the intervals [s

��
, s

����
]

are nested, and that the intersection of all these intervals (the
Chinese Box Theorem, qn 4.42) contains just one number, the sum
of the series. We will find the limit in qn 65.

63 (Leibniz, 1682) The argument of qn 62 is easily generalised to
establish the convergence of any series of the form � (�1)���a

�
when (a

�
) is a monotonic decreasing null sequence of positive terms.

This is called the alternating series text.
In this case, let s

�
	� ���

���
(�1)���a

�
.

Show that s
����

� s
��

� 0,
and that s

����
� s

����
� 0.

From the proposition s
�
� s

��
� a

����
	 s

����
� s

�
, show that the

intervals [s
��
, s

����
] are nested, and their intersection contains only

one number.
Deduce that � (�1)���a

�
is convergent

64 Why is the series 1��
�
��

�
��

�
� . . .� (�1)��� �

����
� . . .

convergent?

65 We examine the series of qn 62, using the symbols D
�
and � from

qn 56.

1�
1

2
�

1

3
�

1

4
� . . .�

1

2n

	 1�
1

2
�

1

3
�

1

4
� . . .�

1

2n
� 2�

1

2
�

1

4
� . . .�

1

2n�
	 log 2n�D

��
� (log n�D

�
)

	 log 2�D
��

�D
�
.

Now use the fact that (D
�
)� � as n��, to prove that the sum of the

series in qn 62 is log
�
2.

Absolute convergence

66 For the series � (�1)�/n both the subseries of positive terms and the
subseries of negative terms, taken separately, are divergent. In the
case of the series � (�1)�/n�, the subseries of positive terms and the
subseries of negative terms, taken separately, are convergent.
For � (�1)�/n�, the alternating series test will establish convergence,
but a more direct proof is available in such a case. We construct
two new series thus.
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n	 1 2 3 4 5 6 . . .
a
�
	 �1 ��



��

�
� �

��
� �

��
� �

��
. . .

u
�
	 0 �



0 �

��
0 �

��
. . .

v
�
	 1 0 �

�
0 �

��
0 . . .

In each case the terms of the new sequences (u
�
) and (v

�
) are equal

either to 0 or to � a
�
� , so clearly 0� u

�
� � a

�
� , and 0� v

�
� � a

�
� .

Now � a
�
�	 1/n� and � 1/n� is convergent from qn 27, so

(i) � u
�
is convergent (why?),

(ii) � v
�
is convergent (why?)

(iii) � (u
�
� v

�
) is convergent (why?),

(iv) � a
�
is convergent.

67 A series � a
�
for which � � a

�
� is a convergent is said to be absolutely

convergent. The argument used in qn 66 can be generalised to
establish that a series which is absolutely convergent is necessarily
convergent. The clue, as we have seen, is to construct the series
formed by the positive terms and the series formed by the negative
terms.
If we define u

�
	�

�
( � a

�
�� a

�
), what values may u

�
take?

If we define v
�
	�

�
( � a

�
� � a

�
), what values may v

�
take?

Now use the convergence of � � a
�
� to prove that � u

�
and � v

�
are

convergent and hence that � (u
�
� v

�
) is convergent. What is u

�
� v

�
equal to?

68 Use d’Alembert’s ratio test (qn 43) to devise a condition for a series
to be absolutely convergent. When combined with qn 67, this gives
a stronger form of d’Alembert’s ratio test.

69 Does the condition � �
a
���
a
�
� �� k� 1 as n�� imply that the

series � a
�
is divergent?

70 Use Cauchy’s nth root test (qn 35) to devise a condition for a series
to be absolutely convergent. When combined with qn 67, this gives
a stronger form of Cauchy’s nth root test.

Conditional convergence

A series � a
�
which is convergent, but not absolutely convergent, is

said to be conditionally convergent. The series � (�1)�/n is conditionally
convergent.

71 With the notation of qn 67, use the equations a
�
	 u

�
� v

�
and

� a
�
� 	 u

�
� v

�
to prove that, if � a

�
is conditionally convergent, then
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both � u
�
and � v

�
are divergent, and the partial sums of both series

tend to infinity.

Rearrangements

In qn 62 we proved that 1��
�
��

�
��



��

�
� �

�
� . . . was

convergent.
If terms of this series are rearranged so as to have two positive terms
preceding each negative term, we get the following result.

0.9

1

1.1

1.2

1.3

5 201510
n

(1��
�
��

�
)� (�

�
��

�
��



)� (�

�
� �

��
��

�
)� . . .

	 (1��
�
��

�
� �



��

�
��



)� (�

�
��

�
��

�
��

�
��

�
��

�
)

� (�
�
� �

��
� �

��
� �

��
� �

��
� �

��
)� . . .

	 (1��
�
��

�
� �



)� (�

�
��



)� (�

�
��

�
��

�
��

�
)� (�

�
��

�
)

� (�
�
� �

��
� �

��
� �

��
)� ( �

��
� �

��
)� . . .

	 (1��
�
��

�
� �



)� (�

�
��

�
��

�
��

�
)� (�

�
� �

��
� �

��
� �

��
)� . . .

� (�
�
��



)� (�

�
��

�
)� ( �

��
� �

��
)� . . .

	 (1��
�
��

�
� �



)� (�

�
��

�
��

�
��

�
)� (�

�
� �

��
� �

��
� �

��
)� . . .

��
�
(1� �

�
)��

�
(�
�
��



)��

�
(�
�
��

�
)� . . .

	 (1��
�
��

�
� �



��

�
��

�
� �

�
��

�
��

�
� �

��
� �

��
� �

��
� . . .)

��
�
(1� �

�
��

�
��



� �

�
��

�
� . . .).

This is apparently �
�
times the original series, before rearrangement!

72 For the series � a
�
	 1� 1��

�
��

�
��

�
��

�
��



� �



� . . . find the

partial sum s
��

of the first 2n terms, and the partial sum s
����

of
the first 2n� 1 terms. Deduce that the series is convergent and find
its sum. Find an expression for a

����
and for a

��
.
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73 For the series

� b
�
	 1��

�
� 1��

�
��



��

�
� . . .

� 1/(2n� 1)� 1/2n� 1/n� . . .

compare the partial sum of the first 3n terms with the partial sum
of the first 2n terms of the series in qn 62. Deduce with the help of
qn 65 that this series has the sum log 2. Find an expression for b

��
,

b
����

, and for b
����

.

74 Prove that the set �a
�
� n � N� of qn 72 is identical to the set

�b
�
� n � N� of qn 73.

Deduce that a rearrangement of the terms of a conditionally
convergent series may alter its sum.

75 (Dirichlet, 1837)
(i) Write down the first nine terms of the series whose (3n� 2)th

term is 1/�(4n� 3), (3n� 1)th term is 1/�(4n� 1) and 3nth
term is �1/�(2n).

(ii) Check that this series is a rearrangement of � (�1)���/�n.
(iii) Is � (�1)���/�n convergent?
(iv) Prove that, if n� 12, then

1

n
�

1

	4n� 3
�

1

	4n� 1
�

1

	2n
.

(Hint. Multiply through by 2�n.)

(v) Prove that the series in (i) is divergent.

So a conditionally convergent series may be rearranged to diverge!

With the result of qn 71 it is possible to see how to rearrange the terms
of any conditionally convergent series, to produce another series which
converges to any limit we please, say, l. First take positive terms until l
is just exceeded, then take negative terms until the sum is just less than
l, and so on. The divergence of � u

�
and � v

�
means this is always

possible, and the fact that both (u
�
) and (v

�
) are null sequences

guarantees the convergence. (Riemann, 1854.)

76 Let � a
�
be a sequence of positive terms with sum A and let � b

�
be

a rearrangement of the same series. Let s
�
	 � ���

���
a
�
and let

t
�
	 � ���

���
b
�
.

Suppose that the first N terms of the sequence of bs are included
within the first M terms of the sequence of as. Prove that
t
�

� s
�

�A. Deduce that � b
�
is convergent to a sum B (say) and

that B�A.
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Now suppose that the first N terms of the sequence of as are
contained within the first L terms of the sequence of bs. Prove that
s
�

� t
�
�B. Deduce that A�B, so that A	B.

This establishes that when a convergent series of positive terms is
rearranged it is always convergent to the same sum.

77 Let � a
�
be an absolutely convergent series and let � b

�
be a

rearrangement of the same series.
As in qn 67, we let

u
�
	�

�
( � a

�
� � a

�
), v

�
	�

�
( � a

�
�� a

�
),

x
�
	�

�
( � b

�
� � b

�
), y

�
	�

�
( � b

�
�� b

�
).

Why are the two series � u
�
and � v

�
necessarily convergent?

Are they both sequences of positive or zero terms?
How does � u

�
relate to �x

�
, and � v

�
to � y

�
?

Prove that � a
�
	 � (u

�
� v

�
)	� (x

�
� y

�
)	� b

�
.

This establishes that when an absolutely convergent series is
rearranged, it is always convergent to the same sum.

Summary – series of positive and negative terms

Alternating series test
qn 63 If (a

�
) is a monotonic null sequence then

� (�1)���a
�
is convergent.

Definition If � � a
�
� is convergent, then � a

�
is said to be

absolutely convergent.
Absolute convergence test

qn 67 If � a
�
is absolutely convergent then � a

�
is

convergent.
Definition A series � a

�
which is convergent, but not

absolutely convergent, is said to be conditionally
convergent.

Rearrangements
qns 74, 76

If the terms of a conditionally convergent series
are rearranged, the sum of the series may be
changed, or the rearranged series may diverge.

Theorem
qn 77

If the terms of an absolutely convergent series
are rearranged, the rearranged series has the
same sum.
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Power series

Applications of d’Alembert’s ratio test and Cauchy’s nth root test for
absolute convergence

78 For what values of x is � x� convergent? divergent? See qn 9.

79 By using d’Alembert’s test for absolute convergence (qns 68 and 69)
determine for what values of x the series � nx� is convergent and
for what values it is divergent.

80 By using Cauchy’s nth root rest for absolute convergence (qn 70)
determine for what values of x the series � nx� is convergent and
for what values it is divergent.

81 For what values of x is the series � n�x� convergent and for what
values is it divergent?

82 For what values of x is the series �x�/n convergent and for what
values is it divergent? This question is particularly illuminating
because of the possibilities at the critical values when � x � 	 1.

83 For what values of x is the series �x�/n� convergent and for what
values is it divergent?

84 For what values of x is the series for arctanx convergent:

x�
x�

3
�
x�

5
�
x�

7
� . . .� (�1)���

x����

2n� 1
� . . .?

85 Discuss the convergence of the series � n�x� for various values of x
and �.

86 Prove that �x�/n! is absolutely convergent for each value of x.

87 Prove that � (�1)���x����/(2n� 1)! is absolutely convergent for
each value of x.

88 Prove that � n!x� is only convergent when x	 0.

89 For what values of x is the series � (2x)� convergent and for what
values is it divergent?

90 For what values of x is the series � (2x)�/n convergent and for what
values is it divergent?

Radius of convergence

91 (Abel, 1827) If � a
�
y� is convergent, use qn 11 (the null sequence

test) to prove that, for sufficiently large n, � a
�
y� � � 1.
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For any real number x such that � x �� � y � , prove that, for these
values of n, � a

�
x� �� � x/y � �, and deduce from the first comparison

test (qn 26) that the series � a
�
x� is absolutely convergent.

It is illuminating to illustrate this result on the number line. If a
power series is convergent for a particular value of the variable
other than 0, then it is absolutely convergent for any value of the
variable which is nearer to the origin.

yx0xy

92 The result of qn 91 is available under weaker conditions. Suppose
only that the terms of the series � a

�
y� are bounded, say,

� a
�
y� � �K. Use the argument of qn 91 to prove that the series

� a
�
x� is absolutely convergent when �x � � � y � .

93 Use the contrapositive of qn 91 to show that if � a
�
y� is divergent,

then � a
�
x� is divergent when � x � � � y � .

94 For a given power series � a
�
x�, we consider the values of x for

which the power series is convergent. Every power series is
convergent for x	 0, so the set of such values is not empty.
Let C	 � � x � :� a

�
x� is convergent�.

The set C is a set of real numbers� 0. Use qn 91 to show that if C
is unbounded then � a

�
x� is convergent for all values of x.

If C is bounded, let R denote its least upper bound,

R	 supC.

For any x with �x ��R, use the properties of a least upper bound
(qn 4.64) to say why there exists a y with � x �� � y � �R and � a

�
y�

convergent, and deduce that � a
�
x� is absolutely convergent.

If, for some x with �x � �R, the series � a
�
x� were to be convergent,

say why this would contradict the definition of R as an upper
bound for C.

The work of qn 94 gives the basis for the definition of the radius of
convergence, R, of a power series � a

�
x�.

If the power series is only convergent when x	 0, we say that its
radius of convergence R	 0.

If the power series is convergent for �x � �R and divergent for
�x � �R, for some positive real number R, then its radius of
convergence is that real number R.

If the power series is convergent for all values of x, we say that its
radius of convergence R	 �.

When these results are extended to the plane of complex numbers
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we obtain a circle � z �	R called the circle of convergence.
Qn 94 establishes that every power series has a radius of

convergence.

95 If ( � a
���

/a
�
� )� k� 0, prove that the radius of convergence of the

power series � a
�
x� is 1/k.

96 If ( �� � a
�
� )� k� 0, prove that the radius of convergence of the

power series � a
�
x� is 1/k.

97 Find the radius of convergence of � (nx)�/n!.

98 (Cauchy, 1821) If a is a real number which is not a positive integer
or 0, and

�
a

n�	
a(a� 1) . . . (a� n� 1)

n!
, the binomial coefficient,

prove that the power series ��
a

n� x� has radius of convergence 1.

99 If the sequence ( �� � a
�
� ) is unbounded, show that, for any value of

x� 0, infinitely many terms of the sequence are �1/ �x � , so the
terms of the power series � a

�
x� do not form a null sequence.

Determine the radius of convergence.

100 If the sequence ( �� � a
�
� )� 0 as n� �, show that, for any value of

x� 0, and for sufficiently large n, the terms of the sequence are
��

�
/ �x � , and hence show that the power series � a

�
x� is absolutely

convergent for all values of x. Determine the radius of convergence
in this case.

101 Show that the series � ((�
�
x)���� � (�

�
x)��) has radius of convergence

2. Notice that in this case, the sequence ( �� � a
�
� ) is not convergent,

but oscillates between �
�
and �

�
.

Cauchy–Hadamard formula

Question 102 uses the notation of lim sup which was developed as
an optional part of the book in qns 4.83 and 4.84.

102 If the sequence ( �� � a
�
� ) is bounded but not necessarily convergent,

we let lim sup �� � a
�
� 	A. We further suppose that A� 0, since this

case has been considered in qn 99. Show that if � x �� 1/A then
�� � a

�
� � 1/ �x � for infinitely many n and so the terms of the power

series � a
�
x� do not form a null sequence and the series is divergent.

Show also that if �x � � 1/A, then, choosing r such that
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�x � � r� 1/A, for sufficiently large n, �� � a
�
�� 1/r, so we have

�� � a
�
x� � � � x � /r� 1, and so the series � a

�
x� is convergent. Identify

the radius of convergence.

The exploration in questions 99, 100 and 102 leads to the
Cauchy—Hadamard formula

R	 1/lim sup �� � a
�
� ,

which, with suitable interpretations, is a general statement of the radius
of convergence of the power series � a

�
x�.

103 Give an example of a power series � a
�
x�, with radius of

convergence 1, which is divergent at each point on the circle of
convergence.

104 Give an example of a power series � a
�
x�, with radius of

convergence 1, which is convergent at one point on the circle of
convergence, and divergent at another.

105 Give an example of a power series � a
�
x�, with radius of

convergence 1, which is convergent at each point on the circle of
convergence.

106 Compare the regions of convergence of the three power series

log(1� x)	x�
x�

2
�
x�

3
�
x


4
� . . .,

1

1�x
	 1� x� x��x� � . . .,

�1

(1�x)�
	�1� 2x� 3x�� 4x�� . . ..

107 Use the Cauchy—Hadamard formula to show that the three series
� a

�
x�, � na

�
x��� and � a

�
x���/(n� 1) have the same radius of

convergence. This establishes that the radius of convergence is not
changed when a power series is differentiated or integrated term by
term.

The Cauchy product

108 If A
�
(x)	� ���

���
a
�
x� and B

�
(x)	� ���

���
b
�
x�, calculate the

coefficients, c
�
, in the product

A
�
(x) ·B

�
(x)	

���
�

���

c
�
x� �

����
�

�����

d
�
x�.
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The series ��
���

c
�
is said to be the Cauchy product of the series

��
���

a
�
and � �

���
b
�
.

109 By putting a
�
	 b

�
	 (�1)�/�(n� 1), show that even if the series

� a
�
and � b

�
are convergent, their Cauchy product need not be

convergent.

110 Evaluate the Cauchy product of the series � a
�
and the series � b

�
when a

�
	x�/n! and b

�
	 y�/n!, showing that c

�
	 (x� y)�/n!.

With the result of qn 111, qn 110 illustrates that
exp(x) · exp(y)	 exp(x� y), a result which we will establish by a
different route in chapter 11. See qn 11.20(i) and 11.27�.

111 The series � a
�
is absolutely convergent and � �

���
a
�
	A. The series

� b
�
is absolutely convergent and � �

���
b
�
	B. We will show that

the Cauchy product of such series is convergent to the sum A ·B.
The first array below is an array of products from these two series;
the second array is a renaming of the first array, position by
position.

a
�
b
�

a
�
b
�

a
�
b
�

a
�
b
�

. . . a
�
b
�

. . .

a
�
b
�

a
�
b
�

a
�
b
�

a
�
b
�

. . . a
�
b
�

. . .

a
�
b
�

a
�
b
�

a
�
b
�

a
�
b
�

. . . a
�
b
�

. . .

a
�
b
�

a
�
b
�

a
�
b
�

a
�
b
�

. . . a
�
b
�

. . .

� � � � �

a
�
b
�

a
�
b
�

a
�
b
�

a
�
b
�

. . . a
�
b
�

. . .

� � � � �

d
�

d



d
�

d
��

. . . d

�����

. . .

d
�

d
�

d
�

d
��

. . . d

�������

. . .

d
�

d
�

d
�

d
�


. . . d

�������

. . .

d
��

d
��

d
��

d
��

. . . d

�������

. . .

� � � � �

d
����

d
����

d
����

d
���


. . . d
������

. . .

� � � � �

(i) Prove that

��
�����
�
���

d
�
	

���
�
���

a
�
·
���
�
���

b
�
.
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(ii) Prove that

��
�����
�
���

� d
�
�	

���
�
���

� a
�
� ·

���
�
���

� b
�
� .

(iii) Prove that � d
�
is absolutely convergent. Use the product rule,

qn 3.54, and also 3.80.

(iv) Show that the Cauchy product of ��
���

a
�
and � �

���
b
�
is a

rearrangement of � �
���

d
�
.

(v) Prove that the Cauchy product of � a
�
and � b

�
is convergent

to the sum A ·B.

112 By calculating the Cauchy product of �x� with itself when
�1�x� 1, prove that 1/(1�x)�	� (n� 1)x�. The series begins
with n	 0.

113 Prove the Binomial Theorem for negative integral index by
induction using a Cauchy product, or in other words, give a power
series which converges to 1/(1� x)� when �1�x� 1.

Summary – power series and the Cauchy product

Theorem
qns 91, 92

If the terms of � a
�
y� are bounded, then � a

�
x� is

absolutely convergent when �x � � � y � .
Definition When � � x � :� a

�
x� is convergent� is bounded

above, sup� �x � :� a
�
x� is convergent� is called

the radius of convergence of � a
�
x�. When

� � x � :� a
�
x� is convergent� is not bounded

above, the radius of convergence of � a
�
x� is

said to be infinite.
Radius of convergence

qn 94 When �x � � the radius of convergence, � a
�
x� is

absolutely convergent.
The Cauchy—Hadamard formula

qn 102 The radius of convergence of � a
�
x� is

1/lim sup �� � a
�
� .

Theorem
qn 107

If a power series is differentiated or integrated
term by term, its radius of convergence does not
change.

Definition
qn 108

If c
�
	 a

�
b
�
� a

�
b
���

� . . .� a
�
b
���

� . . .� a
�
b
�
,

then the series ��
���

c
�
is called the Cauchy

product of the series ��
���

a
�
and � �

���
b
�
.
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Theorem
qn 111

If � a
�
and � b

�
are both absolutely convergent,

then their Cauchy product is convergent to the
product of their sums.

Historical note

Archimedes (250 B.C.) could sum the series � (�


)�. Oresme

(1323—1382) was able to sum � (�


)� and � n(�

�
)� and he also showed the

divergence of the harmonic series in the way we have done.
P. Mengoli found � (�1)���/n	 log 2 and summed the series

� 1/n(n� 1) in 1650. It was the method of summing this latter series
which formed the basis of Leibniz’ theory of integration. I. Newton in
1667 and N. Mercator in 1668 obtained the result
� (�1)���x�	 log(1�x) by integrating the power series for (1�x)��.
James Gregory in 1671 and Leibniz in 1673 obtained the result
� (�1)���/(2n� 1)	�



� by integrating the power series for (1�x�)��.

During the seventeenth and eighteenth centuries the word ‘series’ was
equally used to describe a sequence or a series, and the word
‘convergence’ was used to refer to the sequence (a

�
) or the series � a

�
,

even if it was the latter which appeared to be under discussion. In the
eighteenth century, discussion of the sums of series was not confined to
those cases where the sequence of partial sums was convergent.
Insistence on at least the boundedness of partial sums for meaningful
discussion of an overall sum is due to Gauss (1813). In 1742 C.
Maclaurin used integrals to approximate to values of series and vice
versa, and illustrated his method with � 1/n�. In 1748, by factorising the
power series for sinx like a polynomial, L. Euler showed that
� 1/n�	 ��/6. In 1785 E. Waring showed that � 1/n� was
convergent/divergent according as �� /� 1. His proof used a
rudimentary form of the integral test. The proof we have given is a
special form of Cauchy’s condensation test (1821): that � a

�
is

convergent if and only if � (k�)a
��

is convergent when (a
�
) is a decreasing

sequence of positive terms.
The title of d’Alembert’s ratio test derives from work which he

published in 1768 establishing the convergence of the binomial series by
comparison with geometric progressions with common ratio less than 1.
The ratio test was used with modern precision in Gauss’ paper on the
hypergeometric series (1813). In 1815, Fourier proved that e, defined by
the series � 1/n!, was irrational. The first comparison test, or sandwich
theorem, is described in relation to geometric progressions by Bolzano
(1816). Bolzano (1817) also explained why, for � a

�
to be convergent, it

is necessary for (a
�
) to be a null sequence, but not sufficient because of
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the harmonic series. Many of the theorems in this chapter were stated
and proved for the first time by A. L. Cauchy in his Cours d’analyse
(1821). Cauchy worked with a modern definition of limit, and
considered the convergence of a series only in terms of its sequence of
partial sums. He proved that � a

�
was convergent/divergent when

lim sup �� � a
�
� � /� 1 and also when lim � a

���
/a

�
�� /� 1. In 1827 it

was proposed that (na
�
)� 0 was sufficient to ensure the convergence of

� a
�
, but Abel exhibited the counter-example � 1/n log n in 1828. Cauchy

used his results to give the radius of convergence of a power series in
some particular cases, though the key result on the radius of
convergence (qn 91) is due to Abel (1827). The main result on radius of
convergence was rediscovered by Hadamard (1892) in his thesis. The
‘circle of convergence’ was so-named by Bouquet and Briot in 1853. In
his Cours d’analyse Cauchy argued that absolutely convergent series
were convergent and he established the convergence of � (�1)�/n adding
that ‘the same reasoning can clearly be applied to every series of this
kind’. He proved that the Cauchy product of two absolutely convergent
series converges to the product of the two limits, and showed the
necessity for the requirement of absolute convergence with the
counter-example we have given. He used the Cauchy product to discuss
Newton’s binomial series. In 1827 Cauchy gave the integral test for
convergence, though Cauchy’s integrals were only for continuous
functions.

In 1837 P. G. L. Dirichlet showed that a conditionally convergent
series might be rearranged either to give a different sum or to diverge.
The example of divergence that we have given is his. In the same paper,
Dirichlet proved that any rearrangement of an absolutely convergent
series converged to the same sum. In 1854, G. B. H. Riemann showed
that a rearrangment of a conditionally convergent series could be
devised to converge to any preassigned sum. The result was published
posthumously in 1867.
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Answers and comments

1 a� (b� c)	 (a� b)� c can be extended to finite sums. If the sum is
infinite, S may have different values depending on how brackets are
inserted. So an agreed system for inserting brackets is needed.

3 1/(r(r� 1))	 1/r� 1/(r� 1).

s
�
	 (1��

�
)� (�

�
� �

�
)� . . .��

1

n
�

1

n� 1� .
���
�
���

1

r(r� 1)
	 1�

1

n� 1
.

5 (1� (�
�
)�)/(1� �

�
). Using 3.39 on geometric progressions, 1/(1� �

�
)	 2.

You do not ‘get there’ in a finite number of steps, but you can get as
close as you like.

6 �
�
	 0.111 . . ..

7 ��
���

9 · (10��)�	 0.090 909 . . ..

8 10.

9 (i) Convergent, from 3.39 and 3.42.
(ii) Divergent from 3.21. Partial sums tend to infinity when x	 1.

Partial sums	�
�
(1� (�1)���) when x	 �1.

10 s
�
� (n� 1)/2���	 2� (n� 3)/2���	 s

���
gives the inductive step.

Put k	 1 and x	 �
�
in 3.74(i).

11 lim a
���

	 s� s	 0.

13 �� 0� (n�)� ���� n� is divergent.

14 If s
�
is the partial sum of the first n terms of

a
�
� a

�
� a

�
� . . .� a

�
� . . .

then s
�
� a

�
is the sum of the first n� 1 terms of

a
�
� a

�
� a



� . . .� a

���
� . . .

lim(s
�
� a

�
)	 s� a

�
.

�
�
���

a
�
	 s�

�
�
���

a
�
	 s� a

�
. t

���
	 s

�
� a

�
.

Conversely

�
�
���

a
�
	 t�

�
�
���

a
�
	 t� a

�
.
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This follows from s
�
	 a

�
� t

���
.

The equation s
�
	 a

�
� t

���
guarantees that (s

�
) has a limit if and only

if (t
�
) has a limit.

15 Let u
�
be the partial sum of the first n terms of ��

���
a
�
, then

s
�
	 a

�
� a

�
� u

���
. Now (s

�
) has a limit if and only if (u

�
) has a limit.

16 Let v
�
be the partial sum of the first n terms of ��

���
a
�
, then

s
�
	 a

�
� a

�
� . . .� a

���
� v

���
. Now (s

�
) has a limit if and only if (v

�
)

has a limit.

17 s� s
���

. This tends to 0 by definition.

18 Given 
 � 0, there exists an N such that n�N� � s
���

� s
�
�� 
 or

�
�����

�
�����

a
� �� 
.

19 If s
�
is the nth partial sum of � a

�
, then c · a

�
is the nth partial sum of

� c · a
�
. By 3.54(i), the scalar rule, (s

�
) is convergent if and only if (c · s

�
)

is convergent, provided c� 0.

20 When c� 0, � c · x� is convergent if and only if �x � � 1.

21 If the nth partial sum of � a
�
is s

�
and the nth partial sum of � b

�
is t

�
,

and (s
�
)� s, (t

�
)� t, then (s

�
� t

�
)� s� t, by the sum rule, 3.54(iii). But

s
�
� t

�
is the nth partial sum of � (a

�
� b

�
).

22 (a) Yes. Unless the subscript is given to be constant, it is assumed to
be a variable taking the values 1, 2, 3, . . ..

(b) (i) and (ii) only.

23 n� 2� n!� 2���� 1/n!� 1/2��� � e
�
� s

�
� 3. Use qn 4.35 for the

convergence of monotonic bounded sequences.

24 Since 2�
�
� e� 3, e	 p/q� q� 3. p/q� n/q!	 k/q! for some integer k.

1/(q� 1)!� 1/(q� 2)!� . . .� (1/q!)(1/3� 1/3�� . . .)	 �
�
/q! which

contradicts the previous line. The proof of this result is set out very
fully in Bryant, pp. 20—2.

25 s
���

	 s
�
� a

���
� s

�
. Since (s

�
) is increasing it is convergent if and

only if it is bounded by qn 4.35.

26 Let A
�
	

���
�
���

a
�
and let B

�
	

���
�
���

b
�
.
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a
�
� b

�
for all r�A

�
�B

�
for all n.

0� a
�
� b

�
� both (A

�
) and (B

�
) are monotonic increasing.

(B
�
) convergent� (B

�
) bounded� (A

�
) bounded� (A

�
) convergent by

qn 4.35.
� a

�
divergent� (A

�
)���� (B

�
)� ���� b

�
divergent.

27 �
�
���

1

(n� 1)�
	

�
�
���

1

n�
.

28 �101� 1.

(i) With the notation of qn 26, A
�
	�(n� 1)� 1� �� as n��.

(iii) �n��(n� 1)� 2�n� �n� �(n� 1)
� 1/(2�n)� 1/(�(n� 1)� �n).

29 �� 2� 0� 1/n�� 1/n��� 1/n� is convergent, by the first comparison
test.
0� � � �

�
� 0� 1/�n� 1/n� �� 1/n� is divergent, by the first

comparison test.

30 Partial sums are unbounded, so � 1/n is divergent.

31 �� 1� 0� 1/n� 1/n�� � 1/n� is divergent.

32 �� 1� � � 1� 0. 2� 1� 2���� 1���, though we have only proved
this for rational � so far, from 2.20. The result for all real numbers
follows from qn 11.34. Thus 1/2���� 1. So all partial
sums� 1/(1� 1/2���).

33 0� (n/(2n� 1))�� (�
�
)�. Now use qn 5 and the first comparison test.

34 n� 3� 8n�� 72� (180� 172)n�� 72� 36(5n�� 2)� 43 · 4n�. As a
geometric progression � (��


�
)� is convergent (qn 9), so � (4n�/(5n�� 2))�

is convergent by the first comparison test (qn 26) for n� 3. From the
start rule (qn 16) � (4n�/(5n�� 2))� is convergent.

35 There is an N such that n�N� � ��a
�
� k �� �

�
(1� k). So

n�N� 0� ��a
�
� �

�
(1� k)	�� 1. Now, as a geometric progression

(qn 9) � �� is convergent. So by the first comparison test (qn 26) � a
�
is

convergent for n�N. From the start rule (qn 16) � a
�
is convergent.

36 ( ��(n/2�))� �
�
and ( ��(n�(0.8)�))� 0.8, using qn 3.59 in each case.

37 ��a
�
� 1� a

�
� 1� (a

�
) is not null. Null sequence test (qn 11).
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38 There is an N such that n�N� � ��a
�
� k �� �

�
(1� k). So

n�N� 1� �
�
(1� k)� ��a

�
. So � a

�
is divergent for n�N, by the first

comparison test (qn 26). Now � a
�
is divergent by the start rule (qn 16).

39 ( ��(1/n))� 1 and � 1/n is divergent. ( ��(1/n�))� 1 and � 1/n� is
convergent. Use qn 3.59 in each case.

40 n� 3� 1� 1/n� 

�
� (1� 1/n)�� ��

�
� a

���
/a

�
	�

�
(1� 1/n)�� �

�
.

a


� a

�
· �
�
. a

�
� a



· �
�
� a

�
· (�

�
)�. By qn 20, � a

�
(�
�
)� is convergent, so by

the first comparison test (qn 26) � a
���

is convergent. By the start rule
(qn 16) � a

�
is convergent.

41 n� 14� 1� 1/n� ��
�


� (1� 1/n)�� ����
��



�
a
���

/a
�
	 0.8(1� 1/n)�� ���

���
� 0.99. a

��
� a

�

· (0.99).

a
��

� a
��

· (0.99)� a
�


· (0.99)�. By qn 20, � a
�

(0.99)� is convergent, so

by the first comparison test (qn 26) � a
���


is convergent. By the start
rule (qn 16) � a

�
is convergent.

42 � a
�
�� is a convergent geometric progression (qn 20), so � a

���
is

convergent by the first comparison test (qn 26) and so � a
�
is

convergent by the start rule (qn 16).

43 Choose 
	 �
�
(1� k).

44 a
���

/a
�
	 2/(n� 1)� 0.

45 a
���

/a
�
	 1/(1� 1/n)�� l� �

�
, by qn 4.36.

46 Use the null sequence test (qn 11).

47 Choose 
	 �
�
(k� 1).

48 ��a
�
	 2x( ��n)�. a

���
/a

�
	 2x(1� 1/n)�. Both sequences tend to 2x, so

� a
�
is convergent when 0� x� �

�
, and divergent when �

�
� x. If x	 �

�
then � a

�
is divergent by qn 13, or the null sequence test.

49 a
�
	 1/n.

50 0� a
�
� 1/n�, so � a

�
is convergent by the first comparison test. But

a
��
/a

����
	 2n� ��.

51 a
�
b
�

	
1� 1/	n

1� 2/n�
.

Choose 
	 �
�
. � b

�
is convergent by qn 32. So � �

�
b
�
is convergent by

the scalar rule (qn 19). Now n�N� 0� a
�
� �

�
b
�
, so � a

�
is
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convergent by the first comparison test (qn 26) and the start rule (qn
16).

52 a
�
b
�

	
1� 1/	n

1� 2/n
.

Choose 
	 �
�
. � b

�
is divergent from qn 28, so � �

�
b
�
is divergent by the

scalar rule (qn 19). Now n�N� 0� �
�
b
�
� a

�
, so � a

�
is divergent by

the first comparison test (qn 26) and the start rule (qn 16).

53 Since 0�mb
�
� a

�
, � a

�
convergent��mb

�
convergent by the first

comparison test�� b
�
is convergent by the scalar rule.

Since 0� a
�
�Mb

�
, � b

�
convergent��Mb

�
convergent by the scalar

rule� � a
�
convergent by the first comparison test.

54 a
�
/b

�
	 1/n. The test requires a positive number m such that

0�m� a
�
/b

�
.

55 Choose 
	 �
�
l. n�N� 0� �

�
l� a

�
/b

�
� �

�
l. Now apply the second

comparison test (qn 53) and the start rule (qn 16).

56 When n�x� n� 1, 1/(n� 1)� 1/x� 1/n, and see chapter 10. Sum
the inequalities for n	 1, 2, 3, . . ., n� 1.
s
�
� 1� log

�
n� s

�
� 1/n.

D
�
	 1, D

�
	 0.807 . . ., D

�
	 0.735 . . ., D



	 0.697 . . .

E
���

�E
�
	

1

n� 1
��

���

���

dx

x
� 0

from the first inequality in the question.

D
�
�E

�
	�

���

�

dx

x
� 1/n.

So (D
�
�E

�
) is a null sequence by the squeeze rule.

57 ( f (n)) is monotonic decreasing and bounded below, by 0, so it is
convergent (qn 4.34). Since f is decreasing,
n�x� n� 1� f (n� 1)� f (x)� f (n). Lower sum� integral� upper
sum. Add the inequalities for n	 1, 2, 3, . . ., n� 1. (s

�
) is monotonic

increasing since f is non-negative. Since

s
�
� f (1)��

�

�

f (x)dx,

if the integral is bounded above, (s
�
) is bounded above and so is

convergent by qn 4.35. Conversely
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�
�

�

f (x)dx� s
���

so that, if (s
�
) is convergent and so bounded, the integral is bounded

above, and so convergent by 4.35.

58 � �
�
1/r���

�

�

dx/x�� 1� s
�
� 2� 1/n.

59 0� � �
�
1/	r��

�

�

dx/	x� 1� 0� � �
�
1/	r� [2	x]�

�
� 1.

60 �
�

�

dx

x · log
�
x

	 [log(logx)]�
�
	 log(log n)� log(log2).

Now claim the contrapositive of the integral test, qn 57.

61 The sequence (D
�
) is monotonic decreasing but positive, and so,

bounded below. Thus it is convergent from qn 4.34.

62 s
����

� s
��

	 1/(2n� 1)� 1/(2n� 2)	 1/(2n� 1)(2n� 2)� 0, so (s
��
)

is strictly increasing.
s
����

� s
����

	�1/(2n� 2)� 1/(2n� 3)	 �1/(2n� 3)(2n� 2)� 0,
so (s

����
) is strictly decreasing. When m� n, s

��
� s

��
� s

����
. When

m� n, s
��

� s
����

� s
����

. The length of the interval [s
��
, s

����
] is

1/(2n� 1) which tends to 0, so at most one point is contained in all the
intervals. But there is at least one point from the Chinese Box
Theorem, qn 4.42.

63 Argument reflects qn 62.

64 (1/(2n� 1)) is a monotonically decreasing null sequence of positive
terms. Apply the alternating series test. The sum is in fact �/4.

65 s
��

	 log 2�D
��

�D
�
, so s	 log 2� �� �.

66 (i) and (ii): use first comparison test with � � a
�
� . (iii) From the sum rule

(qn 21) and the scalar rule (qn 19). (iv) a
�
	 u

�
� v

�
.

67 u
�
	 0 when a

�
� 0, u

�
	 a

�
when 0� a

�
.

v
�
	�a

�
when a

�
� 0, v

�
	 0 when 0� a

�
.

0� u
�
, v

�
� � a

�
� , so � u

�
and � v

�
are convergent by the first

comparison test. Now � (u
�
� v

�
) is convergent by the scalar rule and

the sum rule. a
�
	 u

�
� v

�
.

68 � a
���

/a
�
� � k� 1� � a

�
is absolutely convergent.

69 Yes, by the null sequence test.
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70 ( �� � a
�
� )� k� 1� �

�
is absolutely convergent.

71 Since a
�
	 u

�
� v

�
, u

�
	 a

�
� v

�
and v

�
	 u

�
� a

�
. Now � a

�
is

convergent, so � u
�
and � v

�
are both convergent or both divergent by

the sum rule and the scalar rule. If both were convergent, then so
would � (u

�
� v

�
) be by the sum rule, and u

�
� v

�
	 � a

�
� . But � � a

�
� is

divergent, so both � u
�
and � v

�
are divergent and both are series of

non-negative terms.

72 s
��

	 0, s
����

	 1/(n� 1). So (s
�
)� 0. a

����
	 1/n, a

��
	 �1/n.

73 Denote the partial sum of n terms in qn 62 by t
�
. s

��
	 t

��
,

s
����

	 t
��

� 1/n, s
����

	 t
��

� 1/2n, so (s
�
) and (t

�
) have the same

limit. b
��

	 �1/n, b
����

	 1/2n, b
����

	 1/(2n� 1).

74 a
��

	 b
��
, a


���
	 b

����
, a


���
	 b

����
. � a

�
	 0. � b

�
	 log 2.

75 (i) 1��
1

3
��

1

2
��

1

5
��

1

7
��

1

4
��

1

9
��

1

11
��

1

6
.

(iii) Yes, by the alternating series test.
(iv) Apply hint. L.H.S.	 2/�n which gives a decreasing null

sequence.

R.H.S.	
1

	1� 3/4n
�

1

	1� 1/4n
� 	2,

which decreases but is bounded below by 2� �2.
When n	 12, L.H.S.� 2� �2.

(v) Use first comparison test. Series is divergent by comparison with
� 1/n.

77 � u
�
and � v

�
are both convergent by comparison with � � a

�
� . �x

�
is a

rearrangement of � u
�
, and � y

�
is a rearrangement of � v

�
. But � u

�
and � v

�
are series of positive or zero terms, so � x

�
	� u

�
and

� y
�
	 � v

�
.

79 � a
���

/a
�
� 	 � x � (1� 1/n)� �x � . Series convergent when �x � � 1,

divergent when �x � � 1. Divergent because terms not a null sequence
when �x �	 1.

80 �� � a
�
� 	 � x � ��n� �x �.

81 �� � a
�
� 	 � x � ��(n�)� �x � . Conclusion as in qn 79.

137Answers and comments



82 �� � a
�
� 	 � x � / ��n� �x � . Convergent when � x � � 1 and divergent when

�x � � 1 by Cauchy’s nth root test. Convergent when x	 �1 by the
alternating series test. Divergent when x	 1, harmonic series.

83 �� � a
�
� 	 � x � /( ��n)�� � x � . Conv./div. as x� /� 1. Absolutely

convergent when � x �	 1.

84 Conv./div. as �x �� /� 1 by Cauchy’s nth root test. Convergent by
alternating series test when �x �	 1.

85 �� � a
�
� 	 � x � ��n�� �x � . Conv./div. as �x �� /� 1. When x	 1,

convergent when � � �1 from qn 32. When x 	�1, convergent when
�� 0 by alternating series test.

86 � a
���

/a
�
� 	 � x � /(n� 1)� 0 for all values of x.

87 � a
���

/a
�
� 	x�/(2n� 1)(2n)� 0 for all values of x.

88 � a
���

/a
�
� 	 � x � (n� 1)��� unless x	 0.

89 �� � a
�
� 	 � 2x � . Con./div. as �x �� /� �

�
. Divergent when � x � 	�

�
since

terms not null.

90 �� � a
�
� 	 � 2x � / ��n� � 2x � . Conv./div. as x� /� �

�
. Convergent when

x	 ��
�
by the alternating series test. Divergent when x	 �

�
, harmonic

series.

91 � a
�
x� �	 �x/y � � · � a

�
y� � and �x/y �� 1.

92 � a
�
x� �	 �x/y � � · � a

�
y� � �K · �x/y � �.

93 If � a
�
x� were convergent with �x �� � y � , then by qn 91, � a

�
y� would

be convergent. Contradiction.

94 C unbounded� for any given y, there is an x with � x � � � y � and � a
�
x�

convergent, so � a
�
y� must be convergent for all y by qn 91.

If C is bounded, let 
 	R� �x � , then by qn 4.64, there is a y with
� a

�
y� convergent with R� 
 � y�R, and then � a

�
x� is absolutely

convergent by qn 91.
�x � �C� � x � �R.

95 � a
���
x���/a

�
x� �	 � a

���
/a

�
� · � x �� � kx � . Convergent when � kx � � 1,

divergent when � kx �� 1, by d’Alembert’s ratio test.

96 �� � a
�
x� � 	 ( �� � a

�
� ) · � x �� � kx � .
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97 � a
���

/a
�
� 	 (1� 1/n)�� e, so by qn 95, radius of convergence is 1/e, by

qn 4.36.

98 Use qn 95.

�
a

n� 1���
a

n�	
a� n

n� 1
and �

a� n

n� 1 �� 1.

99 �� � a
�
� � 1/ � x � � � a

�
x� �� 1, so R	 0.

100 Take 
 	�
�
/ �x � , then �� � a

�
� � 
 � � a

�
x� �� (�

�
)�. R	�.

101 �x � � 2� � �
�
x �� 1�� (�

�
x)���� is absolutely convergent.

Also � x � � 2� � �
�
x � � 1.

But � x �� 2� � �
�
x �� 1�� (�

�
x)���� divergent.

For n odd, �� � a
�
�	 �

�
. For n even, �� � a

�
�	 �

�
. Lim sup �� � a

�
�	 �

�
.

102 A is the greatest limit of a subsequence of ( �� � a
�
� ).

When �x �� 1/A we prove that the series is divergent.
Take 
 	A� 1/ � x � ; then there is a subsequence of ( �� � a

�
� ) which

tends to A and so has infinitely many terms such that A� 
 � �� � a
�
� ,

and thus infinitely many terms for which 1/ �x �� �� � a
�
� , giving

1� �� � a
�
x� � . So the sequence of terms of the power series is not null.

When �x �� 1/A we prove that the series is convergent.
Choose r	 (1/2)( � x � � 1/A) for example and take 
 	 1/r�A. If
u
�
	 sup� �� � a

�
� : n� k�, the sequence (u

�
) is decreasing and tends to A,

so u
�
�A� 
 for sufficiently large k and hence �� � a

�
� �A� 
 for that

large n. So, eventually, all �� � a
�
��A� 
 	 1/r.

The radius of convergence is 1/A.

103 a
�
	 1, or a

�
	 n, for example.

104 a
�
	 1/n.

105 a
�
	 1/n�.

106 The first series is convergent when �1�x� 1. The second and third
when �1� x� 1. All three have the same radius of convergence. Note
the effect of differentiation on the first two functions.

107 lim sup �� � na
�
�	 lim sup ��n · �� � a

�
� 	 lim sup �� � a

�
� .

��(n� 1)� ��(2n)	 ��2 · ��n� 1.
So lim sup �� � a

�
/(n� 1) �	 lim sup �� � a

�
� / ��(n� 1)	 lim sup �� � a

�
� .

108 c
�
	 a

�
b
�
� a

�
b
���

� . . .� a
�
b
���

� . . .� a
�
b
�
.
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109 The two series are convergent by the alternating series test.
� c

�
�� (n� 1)/(�(n� 1))(�(n� 1))	 1. Not convergent by the null

sequence test.

110 Use qn 1.5 for the proof. After completing qn 111, use qn 86 to
understand the significance of the result.

111 (i) Use simple algebra.
(ii) Use simple algebra.
(iii) The partial sums of � � d

�
� form an increasing sequence, with a

convergent subsequence from (ii) and the product rule 3.54(vi).
From 3.80, � � d

�
� is convergent, and so � d

�
is absolutely

convergent.
(iv) Cauchy product	 d

�
� (d



� d

�
)� (d

�
� d

�
� d

�
)� . . .

(v) Since � d
�
is absolutely convergent, any rearrangement is

absolutely convergent to the same sum by qn 77.

112 �x� is absolutely convergent when �x � � 1 from qn 9. In the Cauchy
product c

�
is a sum of n� 1 terms.

113 Suppose

(1�x)�� 	 1� nx�
n(n� 1)

1 · 2
x� � . . .�

n(n� 1) . . . (n� r� 1)

r!
x�� . . ..

This series has radius of convergence 1 by qn 98. The coefficient of x�
in the Cauchy product with (1�x)�� is

1� n�
n(n� 1)

1 · 2
� . . .�

n(n� 1) . . . (n� r� 1)

r!

	 (n� 1)�1�
n

2
� . . .�

n(n� 2) . . . (n� r� 1)

r! �
	

(n� 1)(n� 2)

2 �1�
n

3
� . . .�

n(n� 3) . . . (n� r� 1)

3 · 4 · . . . · r �
�

	
(n� 1)(n� 2) . . . (n� r)

r!
,

which is the same form as that assumed for n. When n	 1, the series
takes the familiar form for a geometric progression. This, by induction,
establishes the expansion for n.
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6

Functions and continuity
Neighbourhoods, limits of functions

Preliminary activity: make sure that you have access to graph-drawing
facilities on a computer or graphic calculator, and that you can use
these facilities with confidence.
Preliminary reading: Leavitt ch. 1.
Concurrent reading: Swann and Johnson, Hart, Reade, Smith, Spivak
chs 4, 5, 6.

Functions

When you read or hear the phrase ‘the function f (x)’, what comes
to your mind? Perhaps a formula, perhaps a graph.

1 Write down what x can stand for, and what is meant by f, in the
expression f (x). Compare your answer with the one in the summary
on page 145.

We will introduce some special vocabulary in order to be clear what we
mean when talking about functions.

The domain of a function

If f (x)	x� and the values of x are 0, �1, �2, �3, . . ., �n, . . .,
then the values of f (x) are 0, 1, 4, 9, . . ., n�, . . .. The set of possible
values of x is called the domain of the function. When we say that x is a
variable, we mean that the symbol x is being used to denote any
member of the domain of a function. When the possible values of x are
real numbers, the function is called a function of a real variable.
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The range and co-domain of a function

The set of possible values of f (x) is called the range of the function,
and any set which contains the range may be declared to be the
co-domain of the function. We have just given a function with domain Z

and range N � �0�, which we express symbolically by writing
f: Z � N ��0�, with the definition f (x)	 x�, (or, f: x� x�).

The terms function and mapping are synonymous, and we sometimes
say that the function f maps x to f (x). In fact each of the sequences in
chapter 3 is a function with domain N. When both the domain and
co-domain of f are subsets of R, the function f is called a real function.

Arrow diagram of the function f

Domain of ƒ = {values of x}

Co-domain of ƒ     range of ƒ = {values of ƒ(x)}

ƒ(x) = x

1 0 1 2 3 4 n n + 1

0 1 2 3 4 n

2

2

2 The following functions each have domain and co-domain R. What
is the range of each function?

(i) f (x)	 x�, (ii) f (x)	 x�, (iii) f (x)	 sinx,
(iv) f (x)	 1/(1� x�), (v) f (x)	 e�

[The sine and exponential functions will be defined formally
in chapter 11.]

When the co-domain and range of a function are the same, the
function is said to be onto the co-domain and is called a surjection.
Check that only one of the functions in question 2 is onto R.

The distinctive property of a function or mapping f is that, for a
given element x of the domain, f (x) is uniquely determined as a member
of the co-domain. Thus ��(1�x�) does not define a function of x,
unless the domain is restricted to ��1�, for then the range is simply
�0�. But even f (x)	 �(1� x�) does not define a function with domain
and co-domain R, for then f (x) is not defined when �x � � 1.

3 Each of the following functions has domain A� R and co-domain
R. What is the largest possible domain A for the function?

(i) f (x)	�x, (ii) f (x)	�(1� x�), (iii) f (x)	�(x�� 1),
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(iv) f (x)	 1/x, (v) f (x)	 logx,
(vi) f (x)	 (x�� 4)/(x� 2) (beware of x	 2).

It is sometimes convenient to denote the range of the function
f: A� R by f (A) and to say that f maps A to f (A).

Although, for every function, f, x	 y� f (x)	 f (y), it is only
sometimes the case that f (x)	 f (y)�x	 y. When this second
implication holds, the function f is said to be one-to-one or one—one, and
is called an injection.

4 Which of the functions given in questions 2 and 3 are one—one?

Bijections and inverse functions

If a function f: A�B, with domain A and co-domain B, is both
one—one and onto, not only is each element a �A matched with a
unique element f (a) �B, which is, of course, true for any function f, but
also, for each element b �B, there is a unique element a �A such that
f (a)	 b. A function which is both one—one and onto is called a
bijection. Such a function has an inverse g: B�A, defined by
g( f (a))	 a. When this is the case, we will write g	 f��.

5 For each of the functions described in qns 2 and 3, identify
appropriate subsets A, B� R, such that f: A�B is a bijection.

6 The points on the graph of a real function f have the form (x, f (x)).
If f: A�B is a bijection, why do the points on the graph of f��

have the form ( f (x),x)? Sketch the graph of the function f given by
f (x)	 x� for positive x and sketch the graph of its inverse function
f��(x)	�x. Also sketch the graph of exp (the function E in
chapter 11) and its inverse, log.

Summary – functions

Definition
qns 1, 2,

3, 4,5

If a set A and a set B are given, then a function
f: A�B is a pairing of each element of A with
an element of B. The set A is called the domain
of the function. The set B is called the co-domain
of the function. The element of B which is
paired with a �A is denoted by f (a). The set
� f (a) � a �A� �B is called the range of the
function. When the range of a function is the
whole of its co-domain, the function is said to
be onto its co-domain and is called a surjection.
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When f (x)	 f (y)� x	 y, the function is said to
be one-one and is called an injection. A function
which is both a surjection and an injection is
called a bijection.

Definition A function is said to be a real function when
both its domain and its co-domain are subsets
of R.

Theorem
qns 5, 6

If f: A�B is a bijection, then there is a
well-defined inverse function f��: B�A such
that f��( f (a))	 a, for all a �A.

Continuity

Throughout the eighteenth century, functions were given by
algebraic formulae, with variables being added, subtracted, multiplied or
divided, and combined with exponential, logarithmic or trigonometric
functions. Controversy surrounded the differential equation for a
plucked string, since in the ordinary starting position two straight-line
parts of the string meet at an angle, and thereby require different
algebraic formulae for different parts of the string. Cauchy took the
example of the function defined by f (x)	�(x�) to show that even
familiar algebraic expressions might lead to a graph with a sharp bend
in it.

7 Illustrate on a graph the functions f: R � R given by

(i) f (x)	 0, when x� 0, and f (x)	 x when x� 0;
(ii) f (x)	 0, when x� 0, and f (x)	 x� when x� 0;
(iii) f (x)	�x� when x� 0, and f (x)	x� when x� 0.
(iv) f (x)	 x · � x � .

Allowing a variety of formulae when defining a single function was
a significant first step towards a more general notion of function.
Further steps were taken when limiting processes were considered.

8 Examine the graphs of y	 x�, y	 x�, y	 x
 and y	x�� using a
computer or a graphic calculator.
For what values of x does lim x� exist as n��?
What is the largest subset A� R for which a function f: A� R may
be defined by f (x)	 limx� as n��?
What is the range of this function? Sketch its graph.

9 Examine the graphs of y	
x�� 1

x�� 1
, for n	 2, 3, 10, 11,

using a computer or a graphic calculator.
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For what values of x does lim
x�� 1

x�� 1
exist as n��?

What is the largest subset A� R for which a function f: A� R

may be defined by f (x)	 lim
x�� 1

x�� 1
as n��?

What is the range of this function? Sketch its graph.

10 Examine the graphs of y	 x�/(x�� 1/n), for n	 2, 3, 10, 11,
using a computer or a graphic calculator.
If the function f: R � R is defined by
f (x)	 limx�/(x�� 1/n) as n� �, what is the range of f ?
Sketch the graph of f.

11 Identify the function of x defined by lim
���

1

1� n sin��x
.

Questions 8, 9, 10 and 11 make it evident that the value of f (x)
need not be close to the value of f (y), even when x and y are close to
one another. The modern definition of function only requires that for
each value of x in the domain there is a unique value of f (x) in the
co-domain, and the function is then defined by the pairing (x, f (x)), even
when something like a fresh formula is needed for each number x.

Definition of continuity by sequences

12 Sketch the graph of the function f: R � Z, given by f (x)	 [x], the
integer part of x, defined before qn 3.19.

13 Find the limit of the sequence ([1/n]) as n��.

14 Find the limit of the sequence ([�1/n]) as n��.

15 Find two sequences (a
�
)� 1, and (b

�
)� 1, such that ([a

�
])� 1 and

([b
�
])� 0.

16 For any sequence (a
�
) which converges to �

�
, prove that

([a
�
])� 0	 [�

�
].

The results of questions 13—16 are the basis on which we say that
the function f of qn 12 is continuous at x	�

�
and is not continuous at

x	 0 or x	 1.

17 Is the function f of qn 12 continuous at x	 1�


? The critical point

to test is whether for every sequence (a
�
)� 1�



, the sequence

( f (a
�
))� 1	 f (1�



).
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18 Describe the subset of R of values of x at which the integer
function of qn 12 is not continuous. Also describe the subset of R of
values of x at which this function is continuous.

The ideas in questions 12—18 lead to the following definition.

  

The function f: A� R is continuous at a �A� R when, for every
sequence (an) converging to a, with terms in A, the sequence ( f (an))
converges to f (a).
This is commonly expressed by saying that ‘f (x) tends to f (a) as x

tends to a’ which is also expressed symbolically by writing f (x)� f (a) as
x� a.

The function f: A� R is said to be continuous on A, when it is
continuous at every a �A.

Examples of discontinuity

Continuous functions are so familiar that to clarify the meaning of
this definition we need some examples of discontinuity, illustrating the
absence of continuity. The continuity of a function f at a point a is
recognised by the way the function affects every sequence (a

�
) tending to

a. Discontinuity is established by finding just one sequence (a
�
)� a for

which ( f (a
�
)) does not tend to f (a).

19 Examine the graph of y	 sin 1/x, paying particular attention to the
values of y when x is small.

We define a function f : R � R by
f (x)	 sin 1/x when x� 0, and f (0)	 0.
Let a

�
	 1/(2n�) and b

�
	 1/((2n��

�
)�).
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Which of the four sequences
(i) (a

�
), (ii) (b

�
), (iii) ( f (a

�
)), (iv) ( f (b

�
))

are null sequences?
Deduce that f is not continuous at x	 0.

If f (0) had some value other than 0, might this redefined function f
be continuous at x	 0?

20 (Dirichlet, 1829) Define a function f: R � R by f (x)	 0 when x is
irrational, and f (x)	 1 when x is rational.
If a is a rational number, show that f is not continuous at x	 a by
considering the sequence (a

�
), where a

�
	 a��2/n.

If a is an irrational number, show that f is not continuous at x	 a
by considering the sequence ([10�a]/10�), the infinite decimal
sequence for a, of qn 3.51.

Question 18 gives us an example of a function with an infinity of
isolated discontinuities, qn 19 an example of a function with a single
discontinuity, and qn 20 an example of a function with a dense set of
discontinuities. This will be enough to start with, and we now turn to
the formal confirmation of continuity in the familiar context of
polynomials.

Sums and products of continuous functions

21 If a real function f is defined by f (x)	 c, that is to say, f is a
constant function, prove that f is continuous at each point of its
domain.

22 If a real function f is defined by f (x)	 x, so that f is the identity
function, prove that f is continuous at each point of its domain.

23 The sum rule
If real functions f and g have the same domain A, and are both
continuous at x	 a �A, use qn 3.54(iii), the sum rule, to prove that
the real function f� g defined by

( f� g)(x)	 f (x)� g(x)

is also continuous at x	 a.

24 Use qns 21, 22 and 23 to prove that the function given by
f (x)	 x� 1 is continuous at each point of its domain.

25 If f
�
, f
�
, . . ., f

�
are all real functions with the same domain A, and are

all continuous at x	 a �A, prove by induction that the function
f
�
� f

�
� . . .� f

�
, defined by
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(f
�
� f

�
� . . .� f

�
)(x)	 f

�
(x)� f

�
(x)� . . .� f

�
(x)

is continuous at x	 a.

26 The product rule
If real functions f and g have the same domain A, and are both
continuous at x	 a �A, use qn 3.54(vi), the product rule, to prove
that the real function f · g defined by

( f · g)(x)	 f (x) · g(x)

is also continuous at x	 a.

27 Which of qns 21—26 are required, and in which order, to prove that
the functions f

�
: R � R, given by

(i) f
�
(x)	 2x, (ii) f

�
(x)	 2x� 1, (iii) f

�
(x)	 x�,

(iv) f


(x)	x�, (v) f

�
(x)	 2x�� 1,

are continuous on R?

28 Prove by induction that the function f: R � R, given by
f (x)	 x�, where n � N, is continuous on R.

29 Prove that the function f: R � R, given by

f (x)	 a
�
� a

�
x� a

�
x� � . . .� a

�
x�,

where the a
�
are real numbers, is continuous on R.

This establishes that polynomial functions are continuous on R.

30 The acid test of understanding the language we have introduced
comes when deciding at what points the function given by
f (x)	 1/x is continuous. With reference to qn 3, determine the
maximum domain of definition of this real function. Use qns 3.65
and 3.66, the reciprocal rule, to prove that this function is
continuous at every point where it is defined.

31 Use qn 30 to extend the result of qn 29 to give a family of
functions each one of which is continuous on R � �0�.

Continuity in less familiar settings

32 Use qn 3.54(ii), the absolute value rule, to prove that the function
f: R � R given by f (x)	 � x � is continuous on R. Sketch the graph
of f near the origin.

33 Sketch the graph of the real function given by f (x)	 �
�
(x� � x � ),

and prove that it is continuous on R.
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34 Sketch the graph of the real function given by f (x)	�
�
(x� � x � ),

and prove that it is continuous on R.

35 We define a function f: R � R by

f (x)	 0 when x is irrational,

f (x)	 x when x is rational.

Prove that, for all x

�
�
(x� � x � )� f (x)� �

�
(x� �x � ).

Locate the graph of the function f in relation to those you have
drawn for qns 33 and 34.
Is there a value of x for which �

�
(x� � x � )	�

�
(x� � x � )?

A squeeze rule

36 If real functions f, g, and h have the same domain A, and

(i) f (x)� g(x)� h(x), for all x �A,
(ii) f and h are continuous at x	 a �A,
(iii) f (a)	 h(a),

use qn 3.54(viii), the squeeze rule for convergent sequences, to prove
that g is continuous at x	 a.

37 Use qn 36 to prove that the function f of qn 35 is continuous at
x	 0, and use arguments like those of qn 20 to prove that this
function is not continuous at any other point in its domain.
This example highlights an important consequence of our definition
of continuity since the possibility of continuity at a single isolated
point does not spring from an intuitive view of the concept.

Continuity of composite functions and quotients of continuous
functions

38 If f: R � R is defined by f (x)	 sinx and g: R � R is defined by
g(x)	 x�, what are f (g(x)) and g( f (x))?
Look at the graphs of these two composite functions on a
computer screen.
Generally, if f and g are two real functions and the domain of f
contains the range of g, the composite function f � g is defined on the
domain of g by ( f � g)(x)	 f (g(x)).
Notice that the composite function f � g is generally different from
the composite function g � f.
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39 If ABS(x)	 � x � and f (x)	 x� 1, sketch the graphs of f �ABS and
ABS � f.

40 The composite rule
If the function g: A� R is continuous at x	 a and the function
f: g(A)� R is continuous at g(a), prove that f � g is continuous at
x	 a.

41 Use qn 40 to prove that, if a real function f is continuous at x	 a,
then the function ABS � f is also continuous at a, where ABS is
defined as in qn 39.

42 For any real function f, we define a function f� on the same
domain as f by f�(x)	�

�
( f (x)� � f (x) � ). If f is continuous at a, prove

that f� is also continuous at a.
Sketch the graph of f� when f (x)	x�� 1.

43 For any real function f, we define a function f� on the same
domain as f by f�(x)	�

�
( f (x)� � f (x) � ). If f is continuous at a,

prove that f� is also continuous at a.
Sketch the graph of f� when f (x)	x�� 1.

44 For any two real numbers a and b, we define

max(a, b)	�
a

b

when b� a,

when a� b.

Prove that max(a,b)	�
�
(a� b)��

�
� a� b � .

Prove that f�(x)	max( f (x), 0).

45 If real functions f and g have the same domain A, and are both
continuous at x	 a �A, prove that the function max( f, g), defined
by max( f, g)(x)	max( f (x), g(x)) is also continuous at x	 a.

46 If f (x)	x and g(x)	�x, identify the function max( f, g).

47 Let r: R � �0�� R denote the reciprocal function r(x)	 1/x, and let
f (x)	 1�x�. What is the maximum domain of definition of f � r
and of r � f ? Are both these functions continuous throughout their
domains? Use a computer or a graphic calculator to examine the
graphs of f, r � f and f � r.

48 Assuming that the sine function is continuous on R (see chapter 11),
determine the largest subset of R on which the function f of qn 19
is continuous.

49 Use a computer or a graphic calculator to examine the graph of
y	x sin 1/x.
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A function f is defined on R by

f (x)	 x sin 1/x when x� 0,
f (0)	 0.

Assuming that the sine function is continuous on R and that
� sinx � � 1 for all values of x, prove that f is continuous on R.
(Hint: use qns 48, 22 and 26 for x� 0, and qns 32, 26, and 36 for
x	 0.)

50 Let f (x)	 (x� 2)(x� 3) be defined on R and let r denote the same
function as in qn 47.
What is the maximum domain of definition of r � f ? Is this function
continuous throughout its domain? Examine the graphs of f and
r � f on a computer or a graphics calculator.

51 Let f (x)	 a
�
� a

�
x� a

�
x�� . . .� a

�
x�, be defined on R. Let r

denote the same function as in qn 47. What is the maximum
domain of definition of r � f ? Is this function continuous throughout
its domain?

52 Let f: A� R be a real function which is continuous at x	 a, with
f (a)� 0. Let r denote the same function as in qn 47. Prove that r � f
is continuous at x	 a.
The function r � f is also commonly denoted by 1/f. Give a direct
proof that 1/f is continuous at a using qns 3.65 and 3.66, the
reciprocal rule.

53 Prove that the function given by f (x)	 (x�� x)/(x�� 1) is
continuous on R. Examine its graph on a computer or a graphics
calculator.

54 Let f: A� R and g: A� R be real functions which are both
continuous at a. Let G	 �x � g(x)	 0�. If g(a)� 0, prove that the
function f/g: A �G� R defined by ( f/g)(x)	 f (x)/g(x) is continuous
at a. Either consider f · (r � g) or use qn 3.67, the quotient rule,
directly.

55 (Cauchy, 1821) The function f: R � R has the property that

f (x� y)	 f (x)� f (y) for all x, y � R.

(i) Prove that f (0)	 0.
(ii) Prove that f (�x)	�f (x).
(iii) If f is continuous at x	 0, prove that f is continuous on R.
(iv) If f (1)	 a, prove that f (n)	 an, for n � Z.

If n � N, show that n · f (x/n)	 f (x).
(v) If f (1)	 a, prove that f (p/q)	 ap/q, for p, q � Z, q� 0.
(vi) If f (1)	 a and f is continuous on R, prove that f (x)	 ax.
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Summary – continuity by sequences

The sequence definition of continuity
qn 18 A function f: A� R is said to be continuous at

a �A when, for every sequence (a
�
)� a with

terms in A, ( f (a
�
))� f (a).

Theorem If the functions f: A� R and g: A� R are both
continuous at a �A, then

qn 41 (i) � f � is continuous at a;
qn 52 (ii) 1/f is continuous at a, provided f (a)� 0;
qn 23 (iii) f� g is continuous at a;
qn 26 (iv) f · g is continuous at a;
qn 54 (v) f/g is continuous at a, provided g(a)� 0.

Definition
qn 38

If the function f is defined on the range of the
function g, then the function of f � g is defined by
f � g (x)	 f (g(x))

Theorem
qn 40

If the function g is continuous at the point a,
and the function f is continuous at the point
g(a), then the composite function f � g is
continuous at the point a.

A squeeze rule If for three functions f, g and h
qn 36 (i) f (x)� g(x)� h(x) in a neighbourhood of the

point a;
(ii) f (a)	 h(a);
(iii) f and h are continuous at the point a;
then the function g is continuous at a.

Theorem
qn 21

A constant function is continuous at each point
of its domain.

Theorem
qn 22

The identity function is continuous at each
point of its domain.

Theorem
qn 29

A polynomial function is continuous at each
point of its domain.

Neighbourhoods

We say that a function f is continuous at a point x	 a when ‘f (x)
tends to f (a), as x tends to a’, which we may think of as meaning ‘as x
gets near to a, f (x) gets near to f (a)’. So far, we have always described
nearness using sequences and convergence. Another way to describe
nearness is to consider neighbourhoods of a point a.

56 Illustrate the sets

�x: �1� x� 3�, �x: �2� x� 1� 2�, �x: �x� 1 �� 2�
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on a number line. They are, in fact, identical. Such a set is called a
2-neighbourhood of the point 1. The neighbourhood has centre 1
and radius 2. Compare this claim with qn 3.61.

57 Prove that, if �x� 2 � � 0.2, then � x�� 4 � � 1.
Illustrate this result on a graph of the function x�x�.

58 Prove that, if �x� 3 � � 0.1, then � x�� 9 � � 1.

59 Prove that, if �x� 2 � � 1/3, then � 1/x� 1/2 � � 1/10.

60 Prove that, if �x� 2 � � 0.02, then � �x��2 � � 0.01.

61 By considering x	�2 in qn 57, x	�3 in qn 58, x	 2.4 in qn 59
and x	 1.975 in qn 60, show that none of the implications that
you have established in qns 57—60 may be reversed.

Each of these implications takes the form:

if �x� a �� �, then � f (x)� f (a) �� 
.

Expressed rather crudely, each says that if x is near to a then f (x) is
near to f (a).

If we want to pinpoint continuity this way, it matters just how
near is near. We can investigate the kind of connection between �
and 
 that is needed for continuity by examining a point of
discontinuity.

62 Let f (x)	 [x], the integer function, and let a	 2.
If �x� 2 � � 2, can you find an 
 such that � f (x)� f (2) �� 
?
If �x� 2 � � 1, can you find an 
 such that � f (x)� f (2) �� 
?
If �x� 2 � � �

�
, can you find an 
 such that � f (x)� f (2) �� 
?

If �x� 2 � � �


, can you find an 
 such that � f (x)� f (2) �� 
?

The fact that we can find an 
 every time in qn 62 tells us nothing
whatever about the continuity of f.
If we turn the question round, it begins to bite.

63 Let f (x)	 [x] as before.
Can you find a � such that, if � x� 2 ���,
then � f (x)� f (2) �� 2?
Can you find a � such that, if � x� 2 ���,
then � f (x)� f (2) �� 1?
Can you find a � such that, if � x� 2 ���,
then � f (x)� f (2) �� �

�
?

Can you find a � such that, if � x� 2 ���,
then � f (x)� f (2) �� �



?
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    

With our success in finding 
s in qn 62 and our failure to find �s in
qn 63, it looks as if we can pin down continuity at x	 a by saying

f is continuous at x	 a,
provided that, whatever positive � we choose,
we can find a � such that
�x� a �� � implies � f (x)� f (a) �� �.

We first of all see whether this holds in cases that we know are
continuous as in qns 64(i) and (ii).

64 (i) Find a � such that � x� 3 ��� implies �x� � 9 �� 0.5.
(ii) Find a � such that � x� 3 ��� implies � 1/x� 1/3 �� 1/6.
(iii) Find a � such that � x� 3 ��� implies ��x� �3 � � 0.01.

Notice that in each case here, when a satisfactory � has been found,
any lesser (but still positive) � will also serve.

65 (i) If �x� 3 � ��� 1, prove that ��x��3 �� �/(�2��3).
(ii) Given 
� 0, find a � such that �x� 3 ��� � � �x�	3 � � 
.

Question 65(ii) establishes that the neighbourhood definition of
continuity holds for the function x��x at the point x	 3. The
next question uses this to show that the sequential definition of
continuity holds for this function at this point. That is, the
neighbourhood definition of continuity implies the sequential
definition.

66 We seek to prove that for any sequence of positive terms (a
�
)� 3,

we have (�a
�
)��3.

(i) Write down what is meant by (�a
�
)��3, according to the

standard definition.
(ii) Write down what is guaranteed by the neighbourhood

definition of continuity of x��x at x	 3.
(iii) Now use the standard definition of (a

�
)� 3, and (ii), to

establish (i).

So we know that the ‘neighbourhood definition of continuity’ fails in a
case (qn 63) where we know the function is not continuous and we have
found the neighbourhood definition of continuity holds in two cases
(qns 64(i) and 64(ii)) where we know the function is continuous. And in
qn 66 we have used the neighbourhood definition of continuity to
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establish the sequence definition in the case of f (x)	�x at x	 3. Can
we show that this neighbourhood definition of continuity is equivalent
to the sequence definition that we have used in the first half of this
chapter?

67 Suppose that the neighbourhood definition of continuity holds for a
function f and a point x	 a in the domain of the function. Let
(a

�
)� a be a sequence in the domain of the function. Can we show

that the sequence ( f (a
�
))� f (a)?

(i) Write down what is meant by ( f (a
�
))� f (a) according to the

standard definition of convergence, qn 3.60.
(ii) Use the neighbourhood definition of continuity to find a

neighbourhood of a, such that � f (a
�
)� f (a) �� 
, when a

�
is in

the neighbourhood.
(iii) Use the convergence of (a

�
) to show that terms of the

sequence (a
�
) eventually lie in the neighbourhood you found

in part (ii).

Question 67 establishes that neighbourhood continuity at a point
implies sequence continuity at that point. Can we show that sequence
continuity implies neighbourhood continuity? The sequence definition
of continuity considers a collection of sets of points �a

�
�, clustering

about a, in the domain of the function f. Although all the sequences
converge to a, the definition seems to leave in doubt the question as to
whether, if f is sequentially continuous at a, given 
� 0, there must be a
�-neighbourhood of a such that, whenever x belongs to that neighbour-
hood, f (x) is in an 
-neighbourhood of f (a).

To clarify this, we suppose that sequence continuity holds and
neighbourhood continuity fails, for some 
, so that every
neighbourhood of a contains rogue points x, for which � f (x)� f (a) � � 
,
and we obtain a contradiction.

68 Suppose that f is a real function which is sequentially continuous at
a, and that, for some 
� 0, there is no �-neighbourhood of a such
that, for all x in the neighbourhood, � f (x)� f (a) �� 
.

(i) Why must there be a value of x within the neighbourhood
�x � a� 1/n�x� a� 1/n� such that � f (x)� f (a) � � 
?

(ii) If the value of x in (i) is called a
�
, how do you know that

(a
�
� a) is a null sequence?

(iii) With the notation of (i) and (ii), how do you know that the
sequence ( f (a

�
)) does not tend to f (a)? This contradicts our

starting point.

The contradiction obtained in qn 68 leads to the conclusion that, if
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the function f is sequentially continuous at a, then f is neighbourhood
continuous at a.

Neighbourhood continuity is in fact used by many authors as the
basic definition of continuity. In contrast to the sequence definition,
where the infinite process is obvious, the 
� � neighbourhood
definition of continuity looks deceptively finite. The infinite process is
hidden in the fact that the condition must hold for any 
, which must
be thought to take an infinity of values, and in particular to get
arbitrarily small.

There are two simple properties (that will be needed in the next
chapter) which hold for a function continuous at a point, which are
easily established with the neighbourhood definition of continuity.

69 If a function f is continuous at a point a, by choosing 
 	 1, prove
that f (x) is bounded (above and below) in some neighbourhood of
a.

70 If a function f is continuous at a point a and f (a)� 0, by a
judicious choice of 
, prove that f (x)� 0 in some neighbourhood of
a. State and prove an analogous result in case f (a)� 0.

The last question in this section (qn 72) is designed to expose one
of the most counter-intuitive possibilities that follows from the
definition of continuity, namely that the points at which a function is
continuous and the points at which a function is not continuous may
be densely packed together in the domain of the function.

As a preparation for a new idea to be used in qn 72 we offer qn 71
as an option.

(71) Find a neighbourhood of �2 which contains no numbers of the
form n/2 for any integer n.
Find a neighbourhood of �2 which contains no numbers of the
form n/3 for any integer n.
Find a neighbourhood of �2 which contains no numbers of the
form n/4 for any integer n.
Find a neighbourhood of �2 which contains no numbers of the
form n/5 for any integer n.
Find a neighbourhood of �2 which contains no numbers of the
form n/2, n/3. n/4 or n/5 for any integer n.

72 (Thomae, 1875) A function f: (0, 1]� R is defined by

f (x)	�
0

1/q

when x is irrational,

when x is rational and x	 p/q in lowest terms.

This function is sometimes called the ruler function because of the
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resemblance between parts of its graph and the marks on a
pre-decimal ruler. This ‘ruler diagram’ illustrates the graph for
rational points where q is a power of 2.

(a) By constructing a sequence of irrational numbers tending to
each rational point, prove that f is not continuous at any
rational point.

No surprises so far. The really astonishing property of this function
is that it is continuous at every irrational point.

(b) Now let a be an irrational number with 0� a� 1.
Given 
� 0, we seek a � such that

�x� a �� �� � f (x)� f (a) �� 
.

(i) Is there a positive integer m such that 1/m� 
?
(ii) How many rational numbers p/q can there be

between 0 and 1 with q�m? Might any one of them
equal a?

(iii) Is there a shortest distance � a� p/q � for the rational
numbers p/q in part (ii)?

(iv) If we take the shortest distance in (iii) as �, how big
might � f (x)� f (a) � get when �x� a �� �?

(v) Does this establish continuity by the neighbourhood
definition at each irrational point?

One-sided limits

Definition of one-sided limits by sequences

73 When examining the discontinuities of the integer function
f (x)	 [x], we saw that although the sequence (1� 1/n) tends to 1,
the sequence ( f (1� 1/n)) tends to 0 which is not equal to f (1).
Construct another sequence (a

�
) which tends to 1, but for which the

sequence ( f (a
�
)) tends to 0. What property of the sequence (a

�
) is

necessary for this to be the case?
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If a
�
� 1 and (a

�
)� 1, must ( f (a

�
))� 0?

If a
�
� 1 and (a

�
)� 1, must ( f (a

�
))� 0?

Some kinds of discontinuity may be identified and discussed by
considering the two sides of the point in question separately.

  - 

If an � a and (an)� a implies that ( f (an))� l, we write
lim
x�a-

f (x)	 l,

which is read ‘as x tends to a from below, f (x) tends to l’, and is also
written ‘as x� a�, f (x)� l’.

74 What is lim
����

[x] for a	 1, 2, 0?

75 Prove that if f: R � R is continuous at a, then
lim
����

f (x)	 f (a).

76 Give a formal definition of what is meant by
lim
����

f (x)	 l,

which is read ‘as x tends to a from above, f (x) tends to l’, and is
also written ‘as x� a�, f (x)� l’, by strict analogy with limits from
below.

77 What is lim
����

[x] for a	 1, 0, �1?

78 Prove that if f: R � R is continuous at a, then
lim
����

f (x)	 f (a)

79 Prove that if a is a point in the domain of the real function f, and
lim
����

f (x)� lim
����

f (x)

then f is not continuous at a.

In this case the function f is said to have a jump discontinuity,
providing f (a) exists.

Even when
lim
����

f (x)	 lim
����

f (x),

and f (a) exists, it is possible for f to be discontinuous at x	 a, as we
will see in qn 82. The discontinuity in this case is said to be removable.

One-sided limits for functions can be defined without knowing the
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value of the function at the point which seems to be in question, and
this gives a way of pinpointing discontinuity at a point. The fact that
the value of the function at the point in question does not come into
the definition means that a one-sided limit may exist at a point even
when the function itself does not.

80 A jump discontinuity. Find

lim
����

� x � /x and lim
����

�x � /x.

Notice that although the function �x � /x is not defined at x	 0 the
two limits have well-defined values.
If a function f: R � R is defined by f (x)	 �x � /x when x� 0, and
f (0)	 k, use qn 79 to show that f is not continuous at 0 for any
choice of k.

There are important limits that cannot be reached which may be
interesting in their own right quite apart from questions about
continuity.

81 Let f be the function f: R � �0�� R given by

f (x)	
sinx

x
.

The function is not defined at x	 0, but that does not stop there
being a limit from above, or a limit from below as x tends to 0.
Explore this function using a calculator. Remember to have x in
radians. Investigate the limit of this function as x tends to 0 from
above.
Use a calculator to find f (x) when x	 1, �

�
, �


, �
�
, and continue to

find f (x) when x	 (�
�
)�, for n	 0, 1, 2, . . . until no further change in

value takes place, because of the limits of accuracy of your
calculator.
Some calculators have a ‘Fix’ key, by which the number of
displayed decimal places is chosen in advance.

(i) Identify the connection between the ‘Fix’ key and

-neighbourhoods by deciding what value of 
 makes

f (x)	 1.00 correct to two place of decimals

equivalent to

� f (x)� 1 �� 
.
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(ii) Also decide what value of 
 makes

f (x)	 1.000 correct to three places of decimals

equivalent to

� f (x)� 1 � � 
.

(iii) So far as you can tell using your calculator, does

0�x� �
�
� � f (x)� 1 � � 0.5?

Can you find a �� �
�
such that 0� x��� � f (x)� 1 � � 0.5?

Find a � such that 0� x�� � � f (x)� 1 �� 0.05.
Find a � such that 0� x�� � � f (x)� 1 �� 0.005.

In qn 9.27 we will prove that lim
����

f (x)	 1	 lim
����

f (x), for the

function of qn 81 but, despite qn 79, the function f is not continuous at
x	 0 because it is not defined there.

82 A removable discontinuity. By choosing a value for f (0) show that it
is possible to have a function defined at x	 0 for which

lim
����

f (x)	 1	 lim
����

f (x),

but which is still not continuous at x	 0.

Definition of one-sided limits by neighbourhoods

83 A real function f is defined in a neighbourhood of the point a. If,
given any 
� 0, there exists a � such that, when
a�x� a� �, � f (x)� l �� 
, prove that

lim
����

f (x)	 l.

The proof may be constructed like that in qn 67.

84 Prove that if

lim
����

f (x)	 l,

it follows that, given 
� 0, there exists a � such that, when
a�x� a� �, � f (x)� l �� 
.
Obtain this proof, by contradiction, by supposing that the sequence
definition of limit holds, while the neighbourhood definition fails
for some 
, and finding an a

�
such that a� a

�
� a� 1/n and

� f (a
�
)� l � � 
, and examining the sequences (a

�
) and ( f (a

�
)). The

idea of this proof is used in qn 68.
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In qns 83 and 84 we have established that a convergent sequence
definition of limit from above and a neighbourhood definition of limit
from above are equivalent.

85 State a neighbourhood definition of limit from below equivalent to
the convergent sequence definition of limit from below given after
qn 73.

Two-sided limits

Definition of continuity by limits

If both lim
����

f (x)	 l and lim
����

f (x)	 l

it is customary to write

lim
���

f (x)	 l

or ‘as x� a, f (x)� l’ and to say ‘as x tends to a, f (x) tends to l’.

86 If f: R � R is continuous at a, use qns 75 and 78 to show that

lim
���

f (x)	 f (a).

87 Write down the neighbourhood definitions of

lim
����

f (x)	 l and lim
����

f (x)	 l.

Use these definitions to show that, if lim
���

f (x)	 l,

then, given 
 � 0, there exists a � such that when x is in the domain
of f and 0�� x� a ���, then � f (x)� l �� 
.

The important point here is recognising that 0�� x� a ��� means

either a� �� x� a or a�x� a� �

and the answer to the question consists of showing how to choose
the �.

88 (i) If, given 
� 0, there exists a � such that � f (x)� l �� 
 when
0��x� a � ��, prove that

lim
���

f (x)	 l.

Use neighbourhoods for this proof, not sequences.
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(ii) If for every sequence (a
�
)� a in the domain of the function f,

with a
�
� a, ( f (a

�
))� l, prove that

lim
���

f (x)	 l.

89 If, given 
� 0, there exists a � such that when x belongs to the
domain of f and 0� �x� a � ��, then � f (x)� f (a)�� 
, prove that
when x belongs to the domain of f and �x� a�� �, then
� f (x)� f (a) �� 
.

Deduce that if lim
���

f (x)	 f (a) then f is continuous at a.

Now we have established that a function f is continuous at a point
a of its domain if and only if

lim
���

f (x)	 f (a).

90 Find a value of k such that the function f: R � R defined by

f (x)	�
2x

k

when x� 1,

when x� 1,

is continuous at x	 1.

91 If the function f: [a, b]� R is continuous at each point of its
domain give the value of

lim
����

f (x), lim
��
�

f (x) and lim
���

f (x) for c � (a, b).

92 If

lim
����

f (x)	 f (a), lim
��
�

f (x)	 f (b) and

lim
���

f (x)	 f (c), for every c � (a, b),

prove that f is continuous at every point of [a, b]. Use qn 89, and
consider sequences for the one-sided limits.

Theorems on limits

93 The algebra of limits
Use theorems about sequences to prove that if

lim
���

f (x)	 l and lim
���

g(x)	m,
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then

lim
���

� f (x) � 	 � l � ,

lim
���

f (x)� g(x)	 l�m,

lim
���

f (x) · g(x)	 l ·m

and, provided l� 0, lim
���

1/f (x)	 1/l.

94 Prove that lim
���

c	 c and lim
���

x	 a,

and use these results to develop theorems about limits of
polynomials and rational functions.

95 A function f: R � R is defined by

f (x)	 x�, when x� 2,

f (2)	 k,

f (x)	 3x�� 18x� 28, when x� 2.

Is there a value of k which will make f continuous at every point?

96 A real function f is continuous on [a, b]. A real function g is
continuous on [b, c]. a� b� c and f (b)	 g(b). A function F is
constructed by

F(x)	�
f (x),

g(x),

a� x� b

b� x� c .

Prove that F is continuous on [a, c].

Thus if two continuous functions are ‘contiguous’ (coincide at an
end point of their respective domains), the function formed by
joining them is continuous.

97 A function f: R � R is defined by

f (x)	
x�� a�

x� a
, for x� a, where n is a positive integer;

f (a)	 k.

Is there a value of k which would make the function f continuous
at every point?
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98 A squeeze rule
If f (x)� g(x)� h(x), for all x� a, prove that

� g(x)� l ��max( � f (x)� l � , � h(x)� l � ), when x� a.

Deduce that if lim
���

f (x)	 l and lim
���

h(x)	 l

then lim
���

g(x)	 l.

There is one important theorem about continuous functions which
does not carry over into a theorem about limits. If the function g is
continuous at the point a and the function f is continuous at the point
g(a), then the function f � g defined by ( f � g)(x)	 f (g(x)) is continuous at
the point a, the composite rule for continuous functions.

This is equivalent to the proposition about limits that if

lim
���

g(x)	 g(a) and lim
���
��

f (y)	 f (g(a))

then

lim
���

f (g(x))	 f (g(a)).

However if

lim
���

g(x)	m and lim
���

f (y)	 l

it does not necessarily follow that

lim
���

( f � g)(x)	 l.

99 Consider the functions f and g defined by g(x)	 0 for all x, and,
f (x)	 1 when x� 0 and f (0)	 0.
Let a	 0, then m	 0 and l	 1 with the notation of the previous
paragraph.
Determine the function f � g and illustrate the difficulty of applying
theorems about limits to composite functions.

Limits as x������ and when f (x)��� ���

100 Use a computer or a graphics calculator to examine the graph of

f (x)	
x�

x�� 1
.

Construct a formal definition for
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lim
����

f (x)	 l and lim
����

f (x)	 l.

Give alternative definitions using sequences or neighbourhoods.

101 Use a computer or a graphics calculator to examine the graph of

f (x)	
1

x�� 4
.

Construct formal definitions for

lim
����

f (x)	��, lim
����

f (x)	 ��, lim
����

f (x)	��,

lim
����

f (x)	��.

Summary – continuity by neighbourhoods and limits

Theorem
qns 67,

68

The neighbourhood definition of continuity
A function f: A� R is continuous at a �A if and
only if, given 
� 0, there exists a � such that
when x �A and �x� a�� �, then
� f (x)� f (a) �� 
.

Theorem
qn 69

If a function f is continuous at a point a, then it
is bounded in some neighbourhood of a.

Theorem
qn 70

If a function is continuous at a point a and
f (a)� 0, then f is positive in some
neighbourhood of a.

Definition
qns 73, 76

One-sided limits
If ( f (a

�
))� l whenever (a

�
)� a with a

�
� a, then

we write lim
���� f (x)	 l, and say that f (x) tends

to l as x tends to a from below.
If ( f (a

�
))� l whenever (a

�
)� a with a

�
� a, then

we write lim
���� f (x)	 l, and say that f (x) tends

to l as x tends to a from above.
Theorem

qns 83, 84,
85

lim
����

f (x)	 l if and only if given 
� 0, there
exists a � such that when x is in the domain of f
and a� � �x� a, then � f (x)� l�� 
.
lim

����
f (x)	 l if and only if, given 
 � 0, there

exists a � such that when x is in the domain of f
and a�x� a� �, then � f (x)� l�� 
.

Definition Two-sided limits
lim

���
f (x)	 l

when both lim
����

f (x)	 l and lim
���� f (x)	 l.
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Theorem
qn 88

lim
���

f (x)	 l if and only if, given 
� 0, there
exists a � such that when x is in the domain of f
and 0��x� a ���, then � f (x)� l �� 
.

Theorem
qns 75, 78,

89

The definition of continuity by limit
The function f is continuous at a if and only if
lim

���
f (x)	 f (a).

Theorem
qn 93

If lim
���

f (x)	 l and lim
���

g(x)	m, then

(i) lim
���

� f (x) � 	 � l � ;

(ii) lim
���

f (x)� g(x)	 l�m,

(iii) lim
���

f (x) · g(x)	 l ·m,

(iv) lim
���

1/f (x)	 1/l, provided l� 0.

Theorem
qn 98

If for three functions f, g and h
(i) f (x)� g(x)� h(x) except possibly when
x	 a,

(ii) lim
���

f (x)	 l and lim
���

h(x)	 l.

then lim
���

g(x)	 l.

The completeness principle has not been used in this chapter, so all the
definitions and theorems here are valid just with Archimedean order.

Historical note

Throughout the seventeenth and eighteenth centuries, and for many
mathematicians well on into the nineteenth century, the only functions
which were under consideration were polynomials, rational functions,
trigonometric and exponential functions, and combinations of these.
Although the verbal definitions of a function used during the eighteenth
century sound like modern definitions, only functions defined by a
formula were under consideration. Such functions are continuous and
infinitely differentiable except possibly at isolated points (e.g. at x	 0
for the function x� 1/x). Even continuous functions given by different
formulae on different segments of their domain, such as the equation of
a plucked string, were only admitted with discomfort.

It was the consideration of limiting processes by Fourier and
Cauchy, among others, which began to widen the field of functions
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worthy of consideration. Following his study of series of trigonometric
functions, Fourier insisted (1822) that the values of a function need not
be smoothly connected. In 1829 Dirichlet proposed a function like that
of qn 20 in his discussion of Fourier series and integration and it was in
1837 that Dirichlet gave what amounts to the modern definition of
function in which each value of x gives a unique value of f (x), which
need not depend in any way on the value given for a different x, and
the function is defined by the pairing (x, f (x)).

The notation f (x) or �(x) dates from Euler (1734) though separating
the variable in brackets only became standard practice after Cauchy
(1821).

Until the early years of the twentieth century a real function might
take the value �, so that, for example, if f (x)	 1/x, f (0)	�. In 1820,
Herschel used the symbol f�� for the inverse function, but this did not
become standard practice until the twentieth century. Describing
functions in terms of their domains and co-domains followed the
set-theoretic formulation of mathematics in the early years of the
twentieth century. The terms injection, surjection and bijection were
devised by the twentieth century corporate French mathematician
Bourbaki.

It has always been accepted that an equation like x�� y� 	 1
determines a functional relationship between y and x. But a given value
of x between �1 gives two possible values of y, since y	��(1�x�).
Such many-valued functions appear in the literature right through the
nineteenth century, and functions were taken to be single-valued only
when they were said to be so. However for the purposes of defining
continuity, limits, and inverse functions, single-valued functions are
essential and so during the twentieth century functions have come to
mean single-valued functions, though this convention is still not
universal.

In order to formulate the Intermediate Value Theorem both
Bolzano (1817) and Cauchy (1821) needed a definition of continuity,
and said that f was continuous when f (x� h)� f (x) became small with
h. Their definitions are recognisable as our neighbourhood definition of
continuity though they only considered functions which were
continuous at least on an interval, not just at an isolated point. For his
proof of the Intermediate Value Theorem, Bolzano needed the result
that a function which is continuous and takes a non-zero value at a
point must be non-zero in a neighbourhood of that point. The first

� � description of a limit appears in Cauchy’s description of
derivative (1823) without symbolic use of absolute values or inequalities.
The 
� � definition of limit was formulated by Weierstrass using the
modern notation for absolute value, which he introduced, in his first
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lectures in Berlin (1859). The equivalence of the neighbourhood
definition and the sequential definition was established by Cantor in
1871 and the sequential definition of continuity was proposed by
Cantor and Heine in 1872. It was Weierstrass who really paved the way
for the modern study of continuous functions by his construction of an
everywhere continuous and nowhere differentiable function, which
appeared in print in 1874. Until Riemann and Weierstrass,
considerations of continuity had not been clearly distinguished from
those of differentiability. In fact, Bolzano had found an everywhere
continuous but nowhere differentiable function in 1834, but was not
able to publish. In 1851 Riemann proved that a continuous function
was bounded in a neighbourhood of one of its points.

The use of ‘lim’ when referring to limits dates back to L’Huilier in
1786. Cauchy, in speaking of limits as x tends to 0, said that lim sinx
had one value, lim1/x had two values, and lim sin 1/x had an infinity of
values. The study of limits from above and from below had been
stimulated by considerations of Fourier series and in 1837 Dirichlet
proposed the notation f (a� 0) and f (a� 0) for lim

���� f (x) and
lim

����
f (x), and his notation was used by many authors through the

nineteenth century. Weierstrass wrote lim
���

f (x), and the replacing of
the equals sign by an arrow, which is now universal, comes from a
suggestion of the British mathematician J. G. Leathem in 1905.

170 6 Functions and continuity



exp

log

Figure 6.1

Answers

2 (i) R���0�, (ii) R, (iii) [�1, 1], (iv) (0, 1], (v) R�.

3 (i) R���0�, (ii) [�1, 1], (iii) �x �� 1, (iv) R � �0�, (v) R�, (vi) R � �2�.

4 2. (ii) and (v). 3. (i), (iv), (v) and (vi).

5 2. (i) R���0�� R���0�, (ii) R � R, (iii) [��
�
�, �

�
�]� [�1, 1],

(iv) R���0�� (0, 1], (v) R � R�.

3. (i) R���0�� R���0�, (ii) [0, 1]� [0, 1],
(iii) [1,�)� [0,�). (iv) R � �0�� R � �0�, (v) R�� R,
(vi) R��2�� R � �4�.

6 Points on the graph of f�� have the form (b, f��(b)), which if b	 f (a)
have the form ( f (a), a). See Fig. 6.1.

7 (i) See Fig. 6.7. (iii) and (iv) are identical.
See Fig. 6.2.

8 A	 (�1, 1], f (A)	 �0, 1�. See Fig. 6.3.

9 A	 R � ��1�, f (A)	 ��1, 0, 1�. See Fig. 6.4.

10 f (R)	 �0, 1�. See Fig. 6.5.

11 f (Z)	 �1�, f (R � Z�	 �0�.

13 0.

14 �1.

15 a
�
	 1� 1/n, b

�
	 1� 1/n.

16 If (a
�
)� �

�
, taking 
 	 �

�
, 0� a

�
� 1 eventually, so [a

�
]	 0 eventually.
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Figure 6.2

-1 1

1

Figure 6.3

17 If (a
�
)� 1�



, taking 
 	 �



, 1�

�
� a

�
� 2 eventually, so [a

�
]	 1 eventually.

18 Not continuous on Z. Continuous on R � Z.

19 (i), (ii) and (iii) are null. (iv)� 1. For all null sequences (a
�
) there is no

single value of f (0) for which ( f (a
�
))� f (0) for continuity.

20 Let a be rational: (a
�
)� a, but f (a

�
)	 0, so ( f (a

�
))� 0� 1	 f (a). Let a

be irrational: ([10�a]/10�)� a, but f ([10�a]/10�)	 1 for all n, so
( f ([10�a]/10�))� 1� 0	 f (a).

21 Let (a
�
)� a. f (a

�
)	 c, so ( f (a

�
))� c	 f (a).

22 Let (a
�
)� a. f (a

�
)	 a

�
, so ( f (a

�
))	 (a

�
)� a	 f (a).

24 By qn 21, g: x� 1 is continuous at every point.
By qn 22, f: x� x is continuous at every point.
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-1 1

1

-1

Figure 6.4

1

Figure 6.5

So, by qn 23, f� g: x� x� 1 is continuous at every point.

27 (i) 21, 22, 26. (ii) 21, (i), 23. (iii) 22, 26. (iv) 22, 26, 26.
(v) 21, 22, 26, 26, 21, 23.

28 Qn 22 gives basis for induction. Qn 26 gives the inductive step.

29 Repeated use of qns 21, 28, 26 and 25.

30 R � �0�. Let (a
�
)� a� 0, then, by qns 3.65 and 3.66, the reciprocal rule,

( f (a
�
))	 (1/a

�
)� 1/a	 f (a).

31 f (x)	 a
�
� a

�
x� a

�
x�� . . .� a

�
x� � b

�
/x� b

�
/x�� . . .� b

�
/x�.
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ƒ(x) =  x

Figure 6.6

1
2ƒ(x) =   (x +  x )

Figure 6.7

32 See Fig. 6.6.

33 See Fig. 6.7. Use qns 22, 32, 23, and 26.

34 See Fig. 6.8. Proof as qn 33.

35 � � x �� x� � x � ���
�
�x �� �

�
x� �

�
� x � � �

�
x� �

�
�x ��x� �

�
x��

�
�x � .

Also ��
�
�x �� �

�
x� �

�
� x � � �

�
x��

�
�x �� 0� �

�
x��

�
� x � .

�
�
(x� �x � )	 �

�
(x� �x � )� x	 0.

36 Let (a
�
)� a, then ( f (a

�
))� f (a) and (h(a

�
))� h(a)	 f (a).

So (g(a
�
))� f (a)	 g(a)	 h(a) from qn 3.54(viii), the squeeze rule.

37 In qn 36, take f (x)	 �
�
(x� �x � ), g	 f in qn 35, and h(x)	 �

�
(x� �x � ).

By qns 33 and 34, f and h are continuous. By qns 35 and 36, g is
continuous at 0.
Let a� 0 be a rational number. If a

�
	 a��2/n, g(a

�
)	 a

�
, so
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1
2ƒ(x) =   (x +  x )

Figure 6.8

(g(a
�
))	 (a

�
)� a� 0	 g(a), so g is not continuous at a.

Let a be an irrational number then ([10�a]/10�)� a. But
g([10�a]/10�)	 0, so (g([10�a]/10�))� 0� a	 g(a). So g is not
continuous at a.

38 x� sin(x�). x� (sinx)�.

39 See Fig. 6.9.

40 Let (a
�
)� a, then by the continuity of g at a, (g(a

�
))� g(a), so by the

continuity of f at g(a), ( f (g(a
�
)))� f (g(a)).

41 ABS is continuous from qn 32.

42 f� is continuous by qns 41, 23, 26. See Fig. 6.10.

43 f� is continuous by qns 41, 26, 23, 26. See Fig. 6.11.

44 Consider the cases b� a and a� b separately.

45 max( f, g)(x)	�
�
( f (x)� g(x))��

�
� f (x)� g(x) � . Use qns 21, 23, 26, 41.

46 ABS.

47 Maximum domain for f � r is R � �0�; for r � f is R. Both composite
functions are continuous at every point by qns 29, 30 and 40.

48 Qn 19 shows discontinuity at 0. When x� 0, the function is sine � r
which is continuous on R � �0�.

50 Maximum domain for r � f is R � �2, 3�. The composite function is
continuous at every point of its domain, by qns 29, 30, 40.

51 Maximum domain for r � f is R �A, where A	 �x � f (x)	 0�.
Continuous, by qns 29, 30, 40.
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ƒ  ABS

ABS  ƒ�

�

Figure 6.9

-1 1

Figure 6.10

52 Since r is continuous at f (a), r � f is continuous at a, by qn 40.
If (a

�
)� a then ( f (a

�
))� f (a) since f is continuous at a. Now, by qns

3.65 and 3.66, the reciprocal rule, (1/f (a
�
))� 1/f (a) since f (a)� 0. Thus

1/f is continuous at a.

53 If g(x)	x�� x and h(x)	 x�� 1, the function is g · (r � h).
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-1 1

Figure 6.11

54 If (a
�
)� a is a sequence in A �G then (a

�
)� a is a sequence in A so

( f (a
�
))� f (a) since f is continuous at a, and

(g(a
�
))� g(a) since g is continuous at a.

Also ( f (a
�
)/g(a

�
))� f (a)/g(a)

since g(a)� 0 by qn 3.67, the quotient rule. So f/g is continuous at a.

55 (i) f (x)	 f (x� 0)	 f (x)� f (0)� f (0)	 0.
(ii) 0	 f (0)	 f (x� x)	 f (x)� f (�x)� f (�x)	 �f (x).
(iii) Let (a

�
)� a. Then (a

�
� a) is a null sequence, so

( f (a
�
� a))� f (0), since f is continuous at 0.

So ( f (a
�
)� f (a))� 0, and so ( f (a

�
))� f (a), which establishes

continuity on R.
(iv) f (1)	 a� f (1� 1)	 a� a, so by induction f (n)	 na for n � N.

Now use (i) and (ii). 2·f (x/n)	 f (2x/n) etc.
(v) q · f (p/q)	 f (q(p/q))	 f (p)	 pa� f (p/q)	 (p/q)a.
(vi) Already proved that f (x)	 ax for rational x. Suppose x is

irrational. ([10�x]/10�)� x. But f is continuous so
( f ([10�x]/10�))� f (x). Now f ([10�x]/10�)	 a[10�x]/10� and
(a[10�x]/10�)� ax. So f (x)	 ax.

57 1.8�x� 2.2� 3.24�x� � 4.84� 3� x�� 5.
Neither of these implications may be reversed.

58 2.9�x� 3.1� 8.41�x� � 9.61� 8� x�� 10.

59 5/3�x� 7/3� 3/7� 1/x� 3/5� 4/10� 1/x� 6/10.

60 1.98�x� 2.02� 1.407� �x� 1.422��0.008��x��2� 0.008.

62 Any 
 � 2 for the first question.
Any 
 � 1 for the second, third and fourth.
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63 �x� 2 �� 1� � [x]� 2 �� 2.
There is no � such that �x� 2 �� � � � [x]� 2 �� 1 or �

�
or �



.

64 (i) Any � � 0.08.
(ii) Any � � 1.
(iii) Any � � 0.03.

65 (i) �x� 3 �	 ��x� �3 � · ��x� �3 � ��
� � �x��3 ���/ � �x� �3 �� �/(�2� �3),
since �2� �x� �3.

(ii) Take ��min�
(�2��3), 1�.

66 (i) Given 
 � 0, there exists an N such that
n�N� ��a

�
��3 � � 
.

(ii) Given 
 � 0, there exists a � such that
�x� 3 �� �� ��x��3 � � 
.

(iii) Given � � 0, there exists an N such that n�N� � a
�
� 3 �� �,

which, by (ii)� ��a
�
��3 � � 
.

67 (i) Given 
 � 0, there is an N such that n�N� � f (a
�
)� f (a) �� 
.

(ii) Given 
 � 0, there is a � such that
� a

�
� a �� � � � f (a

�
)� f (a) � � 
.

(iii) Given � � 0, there is an N such that n�N� � a
�
� a �� �.

68 (i) �	 1/n does not ensure that � f (x)� f (a) � � 
 for all x satisfying
�x� a �� �. So for at least one x in this �-neighbourhood of a
� f (x)� f (a) � � 
.

(ii) � a
�
� a �� 1/n ensures that (a

�
� a) is a null sequence by qns

3.34, the squeeze rule, and 3.33, the absolute value rule.
(iii) (a

�
)� a. But � f (a

�
)� f (a) �� 
 means ( f (a

�
)) does not tend to f (a).

69 There is a � such that �x� a �� � � � f (x)� f (a) �� 1

� f (a)� 1� f (x)� f (a)� 1.

70 Choose 
	 �
�
f (a).

There is a � such that �x� a �� � � � f (x)� f (a) �� �
�
f (a)

� �
�
f (a)� f (x)� 1�

�
f (a).

When f (a)� 0, choose 
	��
�
f (a).

71 �x� �2 � ��, where �
�
	 � 3/2��2 � , �

�
	 � 4/3��2 � ,

�


	 � 6/4� �2 � , �

�
	 � 7/5� �2 � , �	min(�

�
, �

�
, �



, �

�
).

72 (a) If a � (0, 1] is rational and a
�
	 a� �2/n, then (a

�
) is eventually in

the domain of the function and f (a
�
)	 0. So (a

�
)� a and

( f (a
�
))� 0� f (a).

(b) (i) By Archimedean order there is an integer m� 1/
.
(ii) For each q, there are q possible values for p and so not more

than 1� 2� . . .�m	 �
�
m(m� 1) rational numbers between

0 and 1 with denominator�m.
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(iii) Of the �
�
m(m� 1) or less numbers, � a� p/q � , none of which

are zero, there is a least.
(iv) If x is irrational, then � f (x)� f (a) �	 0.

If x is rational and � x� a �� �, then x	 p/q with q�m.
So � f (x)� f (a) �	 f (x)	 1/q� 1/m�
.

73 For example a
�
	 1� (�

�
)� . Eventually a

�
� 1.

If a
�
	 1, then (a

�
)	 1, but ( f (a

�
))� 1.

74 0, 1, �1.

75 If for every sequence (a
�
)� a, ( f (a

�
))� f (a), then for every sequence

(a
�
)� a with a

�
� a, ( f (a

�
))� f (a).

76 Answer in summary.

77 1, 0, �1.

78 See answer to qn 75.

79 If f were continuous at a then both limits would equal f (a) from qns 75
and 78.

80 �1, 1.

81 (i) 
	 0.005.
(ii) 
	 0.0005.
(iii) Yes. �� 1.895, �� 0.551, � � 0.173.

82 Let f (x)	 1 when x� 0, and let f (0)	 2.

83 Let (a
�
)� a where a� a

�
. Given 
� 0, eventually a� a

�
� a� �, so

� f (a
�
)� l �� 
 and this proves that ( f (a

�
))� l.

So the neighbourhood definition of limit implies the sequence definition
of limit.

84 From a� a
�
� a� 1/n, (a

�
)� a by qn 3.54(viii), the squeeze rule. But

� f (a
�
)� l �� 
 implies that ( f (a

�
)) does not tend to l, which contradicts

our hypothesis. So the sequence definition of limit implies the
neighbourhood definition of limit.

85 Answer in summary.

87 Given 
 � 0, the limit from below says that, for some �
�
,

a� �
�
�x� a� � f (x)� l �� 
,

and the limit from above says that, for some �
�
,

a�x� a� �
�
� � f (x)� l �� 
.

So if 0� �x� a � �min(�
�
, �

�
), it follows that � f (x)� l �� 
.

88 (i) a� � �x� a� 0� �x� a � �� � � f (x)� l �� 
.
a�x� a� � � 0� �x� a � �� � � f (x)� l �� 
.

(ii) The two conditions for one-sided limits are obviously satisfied.
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89 0� �x� a �� � or x	 a� �x� a �� �.
� f (x)� f (a) � � 
 is trivial when x	 a.
First proposition is equivalent to the limit (qn 88).
Second proposition implies continuity (qn 67).

90 k	 2. Calculate limits from above and below x	 1 and use qns 79
and 89.

91 f (a) from qn 78, f (b) from qn 75 and f (c) from qn 86.

92 Continuous at c from qn 89.
If (a

�
) is any sequence in [a, c] which tends to a, it has either a finite or

an infinite number of terms different from a. If it only has a finite
number of terms different from a, ( f (a

�
)) is eventually constant with

terms equal to f (a), so ( f (a
�
))� f (a). If it has an infinite number of

terms different from a, and (a
��
) is the subsequence of such terms, then

( f (a
��
))� f (a) for the resulting subsequence by the one sided limit. In

either case, ( f (a
�
))� f (a).

Continuity at b follows similarly.

93 First result from qn 3.54(vii), the absolute value rule, second from
qn 3.54(iii), the sum rule, third from qn 3.54(vi), the product rule,
and the fourth from qns 3.65 and 3.66, the reciprocal rule.

94 The development is like that for continuous functions in qns 21, 22,
23, 25, 26, 28, 29, and then uses qn 93 parts three and four for
rational functions. Composite functions must not be used; see qn
98.

95 Use limits from above and below x	 2. Take k	 4.

96 Since f (b)	 g(b), lim
��
�

F(x)	 f (b)	 g(b)	 lim
��
�

F(x), so F is

continuous at b, by qns 87 and 89. For x� b, any sequence tending
to x � [a, c] is eventually in [a, b] or [b, c] and so F is continuous at
b from the continuity of f or g.

97 x�� a� 	 (x� a)(x���� ax���� . . .� a���x� a���).

So lim
���

f (x)	 na���	 k.

98 f (x)� l� g(x)� l� h(x)� l, for x� a.
If 0� g(x)� l, then � g(x)� l � � � h(x)� l � .
If g(x)� l� 0, then � g(x)� l � � � f (x)� l � .
Given 
� 0, there is a �

�
such that

0��x� a � ��
�
� � f (x)� l �� 
, and there is a �

�
such that

0��x� a � ��
�
� � h(x)� l � � 
.

So, if 0� �x� a � �min(�
�
, �

�
),

� g(x)� l ��max( � f (x)� l � , � h(x)� l � )�
.

The result follows from qn 87.
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99 f � g(x)	 f (g(x))	 f (0)	 0, so lim
���

f � g(x)	 0.
However, lim

���
g(x)	 0 and lim

���
f (y)	 1.

100 lim
����

f (x)	 l means, for any sequence (a
�
)� � �, ( f (a

�
))� l:

or, given 
� 0, there exists a number M such that � f (x)� l � � 

when x�M.
lim

����
f (x)	 l means, for any sequence (a

�
)���, ( f (a

�
))� l: or,

given 
� 0, there exists a number M such that � f (x)� l � � 
 when
x�M.

101 lim
����

f (x)	 �� means, for all sequences (a
�
)� a with a� a

�
,

( f (a
�
))���; or, given any number M, there exists a � such that

M� f (x) when a� x� a� �.
lim

����
f (x)	 �� means, for all sequences (a

�
)� a with a� a

�
,

( f (a
�
))���; or given any number M, there exists a � such that

f (x)�M when a� x� a� �.
lim

����
f (x)	 �� means for all (a

�
)� a with a

�
� a, ( f (a

�
))���;

or, given any number M, there exists a � such that
M� f (x) when a� ��x� a.
lim

����
f (x)	 �� means for all sequences (a

�
)� a with a

�
� a,

( f (a
�
))���; or, given any number M, there exists a � such that

f (x)�M when a� ��x� a.
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7

Continuity and completeness
Functions on intervals

Concurrent reading: Hart, Spivak ch. 7.
Further reading: Rudin ch. 4.

Monotonic functions: one-sided limits

Increasing and decreasing functions, like increasing and decreasing
sequences, have interesting properties and it is useful to be able to
name such functions.

If f (x)� f (y), when x� y, the function f is said to be increasing, or
monotonic increasing.

If f (x)� f (y), when x� y, the function f is said to be strictly
increasing, or strictly monotonic increasing.

1 Which of the following functions with domain R are monotonic
increasing:

(i) x�x�; (ii) x�x�; (iii) x� [x]: (iv) x�x� [x];
(v) x� tan x, (x� (n� �

�
)�); (vi) x� e�?

For each one that is not monotonic increasing, name a subset of
the domain on which it is monotonic increasing.

2 Define what is meant by saying that a real function is decreasing or
monotonic decreasing.
Also define what is meant by saying that a real function is strictly
decreasing or strictly monotonic decreasing.

3 Which of the following functions with domain R are monotonic
decreasing:

(i) x��x�; (ii) x� �x�; (iii) x� 1/x and 0� 0; (iv) x� e��?
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For each one that is not monotonic decreasing, name a subset of
the domain on which it is monotonic decreasing.

4 If f: R � R is monotonic increasing throughout its domain and the
set V 	 � f (x) �x � R� is bounded, prove that lim

���
f (x)	 supV. In

this case the line y	 supV is called an asymptote to the graph of
the function.

5 Let f: R � R be a function which is monotonic increasing
throughout its domain, and let a be a point of the domain.
Let L 	 � f (x) �x� a� and let U	 � f (x) � a�x�.
Find an upper bound for L and a lower bound for U.
Deduce that supL and infU exist.
Prove that supL 	 lim

���� f (x) and infU	 lim
����

f (x).
Thus one-sided limits exist for monotonic increasing functions
whether they are continuous or not. What are the values of these
limits for the function x� [x] at integer points of the domain?

6 Formulate an analogue of qn 5 for monotonic decreasing functions,
and give an example of a discontinuous decreasing function and of
its one-sided limits at points of discontinuity.

7 If, in qn 5, f is continuous at a, show that supL 	 infU. If
conversely, supL 	 infU, show that f is continuous at a. If
supL � infU, explain why supL � infU, and deduce that a
rational number must lie between these two numbers. Deduce that
a monotonic function can have at most a countable number of
discontinuities.

Intervals

8 Find the range of each of the functions defined below. The domain
in each case is R.

(i) f
�
(x)	 1.

(ii) f
�
(x)	 sin x.

(iii) f
�
(x)	 arctanx.

(iv) f


(x)	

1

1�x�
.

(v) f
�
(x)	 e�.

(vi) f
�
(x)	x�.

(vii) f
�
(x)	x.
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The ranges of these seven functions exhibit the seven kinds of
interval on the real line.

Intervals, or connected sets, on the real line are subsets of the real
line which contain all the real numbers lying between any two points of
the subset. The set I is an interval if when r and s � I, and r� s, every x
such that r�x� s also belongs to I.

The seven types of interval are distinguished by their boundedness
and their boundaries.

Bounded above and below

(i) singleton point �a�
(ii) closed interval [a, b]	 �x � a�x� b�
(iii) open interval (a, b)	 �x � a�x� b�
(iv) half-open interval [a, b)	 �x � a� x� b�

(a, b]	 �x � a� x� b�

Bounded above or below, but not both
(v) open half-ray (a,��)	 �x � a�x�

(��, a)	 �x � x� a�
(vi) closed half-ray [a,��)	 �x � a� x�

(��, a]	 �x �x� a�

Unbounded

(vii) the whole real line R

The word open as we have used it here indicates that there is space
within each open set around each point of the set. For example, if
c � (a, b), then a� �

�
(a� c)� c� �

�
(c� b)� b. This is also described by

saying that an open set contains a neighbourhood of each of its points.
The word closed as we have used it here indicates that every

convergent sequence within each closed set converges to a point of the
set. (See qn 3.78.)

The whole real line is both open and closed!

9 Sketch graphs of continuous functions f: (a, b)� R for which the
range is

(i) a singleton point,
(ii) a closed interval,
(iii) an open interval,
(iv) a half-open interval,
(v) an open half-ray,
(vi) a closed half-ray,
(vii) R.
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10 Sketch the graph of a continuous function f: A� R for which the
range of the function is not an interval.
What would you conjecture about the domain A of the function in
such a case?

If we wish to try to prove that continuous functions always map
intervals onto intervals, it is worth noticing first that this result fails if
we are working with only the rational numbers.

11 Let the function f: Q � Q be defined by f (x)	x� � 2. This is
certainly a continuous function. Now restrict the domain to the set
[1, 2]� Q. The numbers �1 and 2 are in the range, but what
rational number between them is not?

This result suggests that it will be necessary to use the completeness
of the real numbers in a proof that continuous functions map intervals
onto intervals.

Intermediate Value Theorem

A simple form of the problem which we are facing is this: suppose
that A is an interval and that f: A� R is a continuous function.
Suppose further that a and b are points in A and that f (a)� 0 and
f (b)� 0. Can we be sure that there is a point c in the interval (a, b) such
that f (c)	 0?

12 (Bolzano, 1817) Let f: [a, b]� R be a continuous function with
f (a)� 0 and f (b)� 0. Sketch the graph of such a function. Try
different sketches which illustrate the same conditions. Notice that
neither of the sets �x � f (x)� 0� or �x � f (x)� 0� need be an interval.
We construct sequences in the domain of the function which either
reach a point x where f (x)	 0 or converge to such a point by
locating smaller and smaller intervals on each of which the function
f changes sign.
Let a

�
	 a, b

�
	 b and d	�

�
(a

�
� b

�
). If f (d)	 0 we have found the

point we want; if f (d)� 0, explain how to choose a
�
and b

�
so that

f (a
�
)� 0, f (b

�
)� 0 and b

�
� a

�
	�

�
(b

�
� a

�
). Extend this process to

an inductive definition of a
�
, b

�
where f (a

�
)� 0� f (b

�
), and

a
�
� a

���
� b

���
� b

�
, with b

���
� a

���
	�

�
(b

�
� a

�
).

13 Let f: [a, b]� R be a continuous function with f (a)� 0 and
f (b)� 0. With the notation of qn 12, suppose that the process of
repeated bisection of the interval [a, b] has not located a point at
which the function is 0.
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(i) How do you know the sequences (a
�
) and (b

�
) are both

convergent?
(ii) If (a

�
)�A and (b

�
)�B, why must f (A)� 0� f (B)?

(iii) Why must A	B and f (A)	 0?
We summarise the result of qn 13 by saying that, if
f: [a, b]� R is a continuous function, f (a)� 0, f (b)� 0, there
exists a c � (a, b) such that f (c)	 0.

14 By applying the result of qn 13 to a suitably chosen function, prove
that, if f: [a, b]� R is a continuous function and f (a)� k� f (b),
then there exists a c � (a, b) such that f (c)	 k.

15 By applying the result of qn 14 to a suitably chosen function, prove
that if f: [a, b]� R is a continuous function and f (a)� k� f (b),
then there exists a c � (a, b) such that f (c)	 k.

Questions 14 and 15, together, give the general form of the
Intermediate Value Theorem, that a continuous function f: [a, b]� R

takes every value between f (a) and f (b).

16 Give an example of a discontinuous function f: [a, b]� R which
takes every value between f (a) and f (b). The existence of such a
function shows that the converse of the Intermediate Value
Theorem (qn 13) is false.

17 Prove that a continuous function f: R � Z is necessarily constant.

18 Prove that a continuous function f: R � Q is necessarily constant.

19 (i) For any real numbers a and b show that the function defined
on R by f (x)	 x�� ax� b has a real root. To what class of
polynomial functions may this result be extended?

(ii) For any positive real number a and integer n� 1, show that
the function f defined by f (x)	x�� a has a positive root. Use
this to provide an alternative proof of the existence of nth
roots for positive numbers to that given in qn 4.40.

20 If f: [0, 1]� [0, 1] is a continuous function, by applying the result
of qn 13 to an appropriately chosen function, prove that there is at
least one c � [0, 1] such that f (c)	 c. Give an example to show that
this result might fail if the domain of f were (0, 1). Generalise this
result for a continuous function
f: [a, b]� [a, b].

21 Can the Intermediate Value Theorem be used to prove that the
image of an interval under a continuous function is necessarily an
interval? Or, in other words, under a continuous function, is a
connected set always mapped onto a connected set?
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Inverses of continuous functions

22 If f: [a,b]� R is a continuous and one—one function with
f (a)� f (b), prove that f is strictly monotonic increasing.
Deduce that the range of f is [ f (a), f (b)].
What is the analogous result if f (a)� f (b)?

23 If f:[a, b]� R is strictly monotonic, must f be

(i) one—one;
(ii) invertible;
(iii) continuous?

24 If f: [a,b]� R is continuous and invertible (see qn 6.6) must f be
strictly monotonic?

25 Suppose that f: [a, b]� R is a continuous and strictly monotonic
function,

(i) How do you know that the range of f is a closed interval
[c, d], say?

(ii) How do you know that f has an inverse function
g: [c, d]� [a, b]?

(iii) How do you know that g must be strictly monotonic?
(iv) Let x be any point in the domain of f and let y	 f (x), so that

a�x� b and c� y� d.
How do you know that lim

����
g(t) and lim

����
g(t) exist?

(v) Let (x
�
)�x be an increasing sequence in [a, b] and let (s

�
)�x

be a decreasing sequence in [a, b]. Why must ( f (x
�
))� f (x)

and ( f (s
�
))� f (x), and of these two sequences why must one

be increasing and one decreasing?
(vi) Deduce that there is a sequence (t

�
)� y from below and one

tending to y from above for each of which (g(t
�
))� g(y).

(vii) Why does this establish that g is continuous at y?

We have now proved that a function which is continuous and strictly
monotonicon an interval has a continuous inverse.The use of completeness
in qn 25 is unavoidable. Consider f: Q � Q given by f (x)	 xwhen x��2
and f (x)	 x� 1 when �2�x. An example of a one—one continuous
function Q � Q, whose inverse is discontinuous everywhere, is given in the
book by Dieudonné cited in the bibliography.

26 Does the function f: R � R defined by f (x)	 x� have an inverse? Find a
maximal interval A� R, with 1 �A for which the function f: A� R

defined by f (x)	x� is monotonic.With thisA, is the function f: A�A
a bijection? Is the function f��: A�A continuous? How is it usually
denoted?
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27 Why does the function f: R���0�� R defined by f (x)	 x� have an
inverse whether the positive integer n is odd or even?
Say why there is a continuous inverse f��: R���0�� R���0�. This
inverse function is normally denoted by x� ��x or x���.

We established the existence of nth roots for positive real numbers in
qn 4.40. The argument here establishes that the function x� x��� is
continuous on R� ��0�.

28 Find the limit

lim
���

1�x

1�x���
,

when m and n are positive integers with m� n. (Another method is
given in qn 9.26.)

Continuous functions on a closed interval

29 What does the Intermediate Value Theorem allow us to claim
about the possible ranges of a continuous function
f: [a, b]� R?

30 Attempt to draw graphs of continuous functions f: [a, b]� R with
the seven different ranges as in qn 9. Use pencil and paper, not a
computer.

We now investigate whether the fact that the ranges found in qn 30
were all bounded above and bounded below, is a necessary consequence
of the conditions, or an indication of our lack of imagination. We
suppose that there exists a continuous function f: [a, b]� R whose
range is unbounded above and see whether any contradiction arises.

31 We suppose that the range of the continuous function f: [a, b]� R

is unbounded above. The unboundedness of the range of f means
that, whatever integer n we choose, we can find an x in [a, b] such
that f (x)� n. If such an x can be found we call it x

�
. This gives us

a sequence (x
�
).

(i) Is there any reason why the sequence (x
�
) should be

convergent?
(ii) Is the sequence (x

�
) bounded?

(iii) Must the sequence (x
�
) contain a convergent subsequence?

(iv) If the subsequence (x
��
) converges to c, why must c � [a, b]?

(v) What does the continuity of f allow us to say about the
sequence ( f (x

��
))?

(vi) For sufficiently large n
�
can we be sure that � f (x

��
)� f (c) � � 1?
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(vii) How does this lead to a contradiction, which therefore
undermines our hypothesis of the unboundedness of the
sequence ( f (x

�
))?

32 If the range of a continuous function f: [a, b]� R were presumed to
be unbounded below, outline how you would establish a
contradiction.

33 A function f: Q � Q is defined by f (x)	 1/(x�� 2),

(i) show that f is continuous throughout its domain,
(ii) explain why the behaviour of f on the interval [1, 2] does not

contradict the result established in qn 31.

So the range of a continuous real function f: [a, b]� R is bounded.

Questions 31 and 32 eliminate R, (a,��), [a,��), (��, a) and
(��, a] as possible ranges for a continuous function f: [a, b]� R. This
leaves open intervals, closed intervals, half-open intervals and singleton
points as the only possibilities. We know that closed intervals and
singleton points are real possibilities. Can we now eliminate the open
intervals and the half-open intervals as our investigation in qn 30 would
suggest we might?

34 (Weierstrass, 1860) Let f: [a, b]� R be a continuous function and
let V 	 � f (x) � a�x� b�.

(i) How do we know that V is an interval?
(ii) How do we know that V is bounded above and below?
(iii) Can you be sure that supV and infV exist?

If we let supV 	M, then M� f (x) for all x � [a, b]. As a
result of our graph drawing, we conjecture that there has to
be a value of x at which M	 f (x).

(iv) Why, given 
 � 0 must there be an x � [a, b] such that
M� 
� f (x)�M?

(v) Define x
�
� [a, b] so that M� 1/n� f (x

�
)�M.

Why must the sequence (x
�
) contain a convergent

subsequence?
(vi) Suppose (x

��
)� c. Why must c � [a, b]?

(vii) Why must ( f (x
��
)) be convergent?

(viii) By considering the limit of the sequence ( f (x
��
)) prove that

M	 f (c).
(ix) Having proved that the function f attains its supremum,

indicate how to show that the function must also attain its
infimum.

35 Explain why function f: Q � R defined by f (x)	 sinx does not
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attain its bounds when examined on the domain [0, 6]. Does this
contradict the result of the previous question?

The result of qns 31 and 32 is usually described by saying that a
continuous function on a closed interval is bounded, and the result of qn
34 by saying that a continuous function on a closed interval attains its
bounds. Questions 31 and 34(i)—(viii) give the Maximum theorem.
Questions 32 and 34(ix) give the Minimum theorem. Although both
results depend on completeness it is not necessary for the Intermediate
Value Theorem to precede their proof. Taken with the Intermediate
Value Theorem, they imply, for continuous real functions, that a closed
interval is mapped to a closed interval or a point.

36 Give examples to show that continuous functions on unbounded
intervals or open intervals or half-open invervals need not be
bounded and, even if bounded, need not attain their bounds.

Uniform continuity

Both the sequence definition of continuity and the neighbourhood
definition of continuity define the continuity of a function at a point,
and we only claim continuity on an interval when the function is
continuous at every point of that interval. Moreover, when determining
continuity at a point with the neighbourhood definition of continuity,
given an 
, the necessary � may be different for continuity at a point a
from what is needed to establish continuity at a point b. We examine
now, when, with a given 
, a choice of � may be made which will
establish continuity throughout an interval. The rôle of closed intervals
again turns out to be critical.

37 If f: [�10, 10]� R is defined by f (x)	 x�, prove that if
�x� y �� 1/20 then � f (x)� f (y) �� 1. Extend this result to show
that, for any positive 
, if � x� y � � 
/20 then � f (x)� f (y) �� 
.

38 If f: (0, 1)� R is defined by f (x)	 1/x, f (x) is unbounded.
Find a �

�
such that if � x� �

�
���

�
, then � f (x)� f (�

�
) �� 1.

Find a �
�
such that if � x� �



���

�
, then � f (x)� f (�



) �� 1.

Show that, if �x� a ��� implies � f (x)� f (a) � � 1, then � � a�/(1� a).
Deduce that there is no constant � such that �x� a ��� implies
� f (x)� f (a) �� 1 for all x and a in the domain of the function f.

   

A function f: A� R is said to be uniformly continuous on A when,
given �� 0, there exists a �� such that

lx� y l������ l f (x)� f (y) l�� �.
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39 Can you be sure that a function which is uniformly continuous on
A is necessarily continuous at each point of A?

In qn 37, we have proved that the function x�x� is uniformly
continuous on [�10, 10]. In qn 38, we have proved that the function
x� 1/x is not uniformly continuous on (0, 1).

40 By considering x	 n� 1/n and y	 n, and taking 
	 1, prove that
the function defined by f (x)	 x� is not uniformly continuous on R.
Notice the effect of changing the domain from question 37.

41 By considering x	 1/2n� and y	 1/(2n��
�
)�, and taking 
	 �

�
,

prove that the function defined by f (x)	 sin(1/x) is not uniformly
continuous on the interval (0, 1). This shows that continuous
functions (see qn 6.48) may fail to be uniformly continuous even
when they are bounded.

42 If a function f: A� R satisfies a Lipschitz condition, namely that
there is a constant real number L such that

� f (x)� f (y) �� L · � x� y �

for any x, y �A, show that f is uniformly continuous on A, by
finding an appropriate � for a given 
. Verify that the function of
qn 37, satisfies a Lipschitz condition with L 	 20.

After studying the Mean Value Theorem in chapter 9 it will be
clear that any function with bounded derivatives necessarily satisfies a
Lipschitz condition, with an upper bound on the absolute value of the
derivatives as the Lipschitz constant.

43 We seek to prove that a continuous function f: [a, b]� R is
necessarily uniformly continuous, and we do so by supposing that
it is not and establishing a contradiction.
When a function is not uniformly continuous, it means that, for
some 
� 0, no � can be found for which �x� y ��� implies that
� f (x)� f (y) �� 
. That is, for each � there are points x and y in the
domain such that � x� y ��� but � f (x)� f (y) �� 
.
Suppose that f is not uniformly continuous and construct two
sequences (x

�
) and (y

�
) for which the difference �x

�
� y

�
�� 1/n but

for which � f (x
�
)� f (y

�
) �� 
.

(i) Is there any reason why the sequence (x
�
) should be

convergent?
(ii) Is the sequence (x

�
) bounded?
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(iii) Must the sequence (x
�
) contain a convergent subsequence?

(iv) If the subsequence (x
��
) converges to c, must the subsequence

(y
��
)� c?

(v) Why must c � [a, b]?
(vi) What can be said about the sequences ( f (x

��
)) and ( f (y

��
)),

because of the continuity of f ?
(vii) Use the inequality

� f (x)� f (y) �� � f (x)� f (c) �� � f (c)� f (y) �

to obtain the contradiction we seek, by showing that the
right-hand side may be made less than the left-hand side.

44 In qns 38, 40 and 41 we found continuous functions which were not
uniformly continuous. Each of these functions was, however, either
unbounded or else had unbounded slope. The function
f: [0,�)� R defined by f (x)	�x is unbounded and has
unbounded slope near the origin. Prove that this function is
uniformly continuous by appealing to qns 26 and 43 on [0, 1] and
by noting that, if either x or y� 1, then ��x��y � � �x� y � .

45 If f: (a, b)� R is continuous and lim
����

f (x) and lim
��
�

f (x) both
exist and are finite, prove that f is uniformly continuous by
constructing a function g which is continuous on [a, b] and for
which g(x)	 f (x) on (a, b).

Extension of functions on Q to functions on R

46 (i) Sketch the graph of

y	
1

2x�� 1
, for 0�x� 1.

Use computer graphics if possible. You will need a large
range for y, say [�10, 10]. What is the equation of the
asymptote?

(ii) Is a real function defined by f (x)	 1/(2x�� 1) for all points
of the domain [0, 1]� Q?

(iii) Is the function given in part (ii) continuous at each point of
the given domain?

(iv) As the curve is steep near the asymptote there is a possibility
that the function may not be uniformly continuous there.
Let m and n be positive integers with m� n. If

�
�
��

�
�x�� �

�
� �

�
,

prove that m/2� f (x)� n/2.
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Deduce that if

�
�
�x� � �

�
� �


�
and �

�
� �

��
� y�� �

�
��

�
,

then 0� y�� x�� 1/n and f (x)� f (y)� n. So the function is
not uniformly continuous.

(v) If you attempted to extend f to a function g: [0, 1]� R such
that f (x)	 g(x) for rational x, is there any value that you
could take for g(1/�2) which would make the function g
continuous at the point 1/�2?

47 The function f: [0, 1]� Q � R is uniformly continuous.

(i) If (a
�
) is a Cauchy sequence of rational numbers in [0, 1],

show that ( f (a
�
)) is a Cauchy sequence.

(ii) If (a
�
) and (b

�
) are rational Cauchy sequences in [0, 1] with the

same real limit, prove that ( f (a
�
)) and ( f (b

�
)) have the same

limit.
(iii) Is there a well-defined function g: [0, 1]� R such that

g(x)	 f (x) for rational x and ( f (a
�
))� g(a), when (a

�
)� a is a

Cauchy sequence of rational numbers with an irrational limit
a?

(iv) Finally, show that g is uniformly continuous on [0, 1]. Given

� 0, choose � such that � x� y ��� implies
� f (x)� f (y) �� �

�

, for rational x and y. Let a and b be real

numbers in [0, 1] such that � a� b � ��, and let (a
�
)� a and

(b
�
)� b be Cauchy sequences of rational numbers wholly

within the interval [a, b]. Use the inequality

� g(a)� g(b) �� � g(a)� f (a
�
) �� � f (a

�
)� f (b

�
) �� � f (b

�
)� g(b) �

to complete the proof that the function f may be extended to
a continuous function on the whole interval [0, 1].

The Intermediate Value Theorem and the Maximum—minimum
Theorem, like the theorem that a continuous function on a closed
interval is uniformly continuous, can only be proved using the
completeness of the real numbers. However, uniform continuity, like
continuity, can be defined whether the domain of the function is
complete or not. What we have shown in qns 46 and 47 is that uniform
continuity is the necessary and sufficient condition that a continuous
function defined on a dense subset of a closed interval may be extended
to a continuous function on the whole interval. As a final optional
exercise we indicate how this theorem can be used to define exponents.
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(48) For positive a� 1 and positive rational x we can construct a� by
qn 4.40, and we can define a� 	 1 and a��	 1/a�.

(i) Prove that f: Q � R� defined by f (x)	 a� is strictly
monotonic. (In fact it is monotonic increasing when 1� a,
and monotonic decreasing when 0� a� 1.)

(ii) For x� 0, and a� 1, let g(x)	 (a�� 1)/x. Use qn 2.50(iii) to
show that g(n)� g(m) for two positive integers n�m. By
putting b	 a�� prove that g(p/q)� g(r/s) for two rational
numbers 0� p/q� r/s, so that g: Q�� R� is monotonic
increasing. Use qn 4.41 to extend g to a monotonic increasing
function on Q�� �0�.

(iii) Prove that f satisfies a Lipschitz condition on any closed
interval [0,B]� Q, where B is a positive rational and so f is
uniformly continuous on that interval by qn 42.

(iv) Deduce from qn 47 that f may be extended to a continuous
function on [0,B] in a unique way.

(v) Use the definition of a�� to extend f to a continuous function
on [�B,B].

Summary

Definition
qns 1, 2

Monotonic functions
A real function f is said to be monotonic
increasing when x� y� f (x)� f (y).
A real function f is said to be strictly monotonic
increasing when x� y� f (x)� f (y).
A real function f is said to be monotonic
decreasing when x� y� f (x)� f (x)� f (y).
A real function f is said to be strictly monotonic
decreasing when x� y� f (x)� f (y).

Theorem
qns 5, 6, 7

A monotonic function has one-sided limits at
each point of its domain. It is continuous where
the two one-sided limits are equal.

Definition
qns 8, 9

Intervals
A subset I of R is said to be connected if when
a, b � I, and a� b, then x � I for every x
satisfying a�x� b.
A connected set is called an interval.
Bounded intervals are classified as
closed intervals [a, b], open intervals (a, b),
half-open intervals (a, b] and singletons �a�.
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Unbounded intervals are classified as closed
half-rays [a,��) or (��, a], open half-rays
(a,��) or (��, a), or the whole line R.

The Intermediate Value Theorem

qns 14, 15 A continuous function, f:[a,b]� R takes every
value between f (a) and f (b).

Theorem
qn 21

The range of a continuous function defined on
an interval is always an interval.

Theorem
qns 22, 23,

24, 25

If a continuous function, f, is defined on an
interval, f has an inverse function if and only if f
is strictly monotonic. In this case the inverse
function is continuous and strictly monotonic.

The Maximum—minimum Theorem

qns 31, 32,
34

A continuous real function defined on a closed
interval is bounded, and attains is bounds.

Uniform continuity

Definition
qns 34—42

A function f: A� R is said to be uniformly
continuous on A when, given 
� 0, there exists
a � such that �x� y� �� � � f (x)� f (y) � � 
.

Theorem
qn 43

If a real function is continuous on a closed
interval then it is uniformly continuous on that
interval.

Theorem
qn 47

If a function is uniformly continuous on a dense
subset of a closed interval, including the end
points, then it may be extended to a continuous
function on the whole interval.

Historical note

The Intermediate Value Theorem had been assumed from
geometrical perceptions during the eighteenth century as the basis of
work on approximations to roots of equations. There were
mathematicians who regarded it as the essential characterisation of
continuity. (We saw how wrong that was in qn 16. The inadmissibility
of defining continuous functions by the Intermediate Value Theorem
was pointed out by Darboux in 1875.) In 1817 Bolzano insisted that
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this was a theorem which required analytical proof. He provided the
first formal definition of a continuous function, showed that if a
continuous function was positive at a point it must be positive in a
neighbourhood of that point and likewise if it is negative at a point it
must be negative in a neighbourhood of that point. Taking the function
to be positive at the upper end of the domain and negative at the lower
end he claimed that the set of points of the domain at which the
function was negative was bounded above and so must have a least
upper bound. At this least upper bound only a zero value for the
function is not contradictory. Bolzano proved the least upper bound
property using a Cauchy sequence, though not by that name (!), derived
from repeated bisections. His proof that Cauchy sequences converge
was incomplete because he thought it followed from the impossibility of
the convergence of such a sequence to two distinct limits. Perhaps
independently of Bolzano, Cauchy also produced a formal definition of
continuity in 1821 and the proof of the Intermediate Value Theorem
that we constructed in this chapter was essentially his. He repeatedly
divided his domain into m equal parts and then selected one part on
which a change of sign had taken place. We took m	 2. Cauchy
assumed, without proof, that monotonic bounded sequences were
convergent.

The theorem that continuous functions on a closed interval were
bounded and attained their bounds had been familiar from the
seventeenth century but under much stronger differentiability
conditions. The integral of Riemann’s discontinuous function (invented
1854, but published 1867) provided an example that distinguished
clearly between continuous and differentiable functions for the first
time. It was Weierstrass in his lectures in Berlin in 1861 who first
proved that a continuous function on a closed interval was bounded
and attained its bounds. Weierstrass called this his ‘Principal theorem’.
Weierstrass affirmed the importance of considering continuous but not
necessarily differentiable functions by his approximation theorem that
every continuous function is the uniform limit of a sequence of
polynomials.

The distinction between continuity at a point and continuity on an
interval was not clear in Cauchy’s work. In his proof of the integrability
of continuous functions (1823), Cauchy assumed continuity but used
uniform continuity. Dirichlet proved that a function which was
continuous on a closed interval was uniformly continuous on that
interval in his lectures in Berlin in 1854. The first proof of this result in
a Weierstassian context was published by E. Heine in 1872.
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Answers

1 (i) R���0�. (ii) Yes. (iii) Yes. (iv) [0, 1) for example. (v) (��
�
�, �

�
�) for

example. (vi) Yes.

2 If f (x)� f (y) when x� y, the function f is said to be decreasing or
monotonic decreasing.
If f (x)� f (y) when x� y, the function is said to be strictly decreasing
or strictly monotonic decreasing.

3 (i) R���0�. (ii) Yes. (iii) R�. (iv) Yes.

4 supV exists, by qn 4.80. By 4.64, given 
� 0, for some x
�
,

supV � 
 � f (x
�
)� supV, but f is monotonic increasing so, for x� x

�
,

supV � 
 � f (x
�
)� f (x)� supV, so � f (x)� supV �� 


and lim

����

f (x)	 supV.

5 f (a) is an upper bound for L and a lower bound for U, so supL and
infU exist by qns 4.80 and 4.81. Given 
 � 0, for some x

�
� a,

supL � 
 � f (x
�
)� supL. But f is monotonic increasing so, if

x
�
�x� a, supL � 
� f (x

�
)� f (x)� supL, and � f (x)� supL �� 
.

Similarly, for some x
�
� a, infU� f (x

�
)� infU� 
. But f is monotonic

increasing so, if a� x�x
�
, infU� f (x)� f (x

�
)� infU� 
, and

� f (x)� infU �� 
.
lim

����

[x]	 n� 1 and lim

����

[x]	 n.

6 If f is monotonic decreasing then, with the notation of qn 5, f (a) is a
lower bound for L and an upper bound for U. Proceed as in qn 5 with
appropriate inequalities reversed.

7 If f is continuous at a, then limits from above and below at a are equal.

supL � f (a)� infU so, if supL 	 infU, then lim

����

f (x)	 f (a)	 lim

����

f (x),

and so f is continuous by qn 6.89.

If supL � inf U, then there is a rational number between these two by
qn 4.6. Because the function is monotonic this locates a distinct
rational number in each discontinuity. The open intervals (supL, infU),
at the points of discontinuity, are disjoint because the function is
monotonic. A set of rationals is countable, so the set of discontinuities
of a monotonic function is countable.

8 (i) �1�, (ii) [�1, 1], (iii) (��
�
�, �

�
�), (iv) (0, 1], (v) R�, (vi) R�� �0�, (vii) R.

9 Make your own sketches without considering possible formulae.
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10 Take A as the union of (two) disjoint and separated intervals.

11 The function is continuous by qn 6.29. The number 0 is not in the
range.

12 If f (d)� 0, then either f (d)� 0 or f (d)� 0. If f (d)� 0, then take a
�
	 a

�
and b

�
	 d. If f (d)� 0, take a

�
	 d and b

�
	 b

�
. Now suppose f (a

�
)� 0

and f (b
�
)� 0 and let d	�

�
(a

�
� b

�
). If f (d)	 0 we have finished. If

f (d)� 0, take a
���

	 a
�
and b

���
	 d. If f (d)� 0, take a

���
	 d and

b
���

	 b
�
.

13 (i) (a
�
) is monotonic increasing and bounded above by b, and thus is

convergent, by qn 4.35. (b
�
) is monotonic decreasing and bounded

below by a, and thus is convergent, by qn 4.34.
(ii) ( f (a

�
))� f (A) by the continuity of f and f (A)� 0 by qn 3.78, the

closed interval property.
(iii) From qns 12 and 3.54(v), B�A	 �

�
(B�A), so B	A.

f (A)� 0� f (A)� f (A)	 0.

14 Define g(x)	 f (x)� k, then g(a)� 0 and g(b)� 0 and g is continuous
by qn 6.23. So g(c)	 0 for some c � (a, b), and f (c)� k	 0, so f (c)	 k.

15 Define g(x)	�f (x), then g(a)� �k� g(b) and g is continuous, by qn
6.26. So g(c)	 �k for some c � (a, b), and f (c)	 k.

16 The following function reaches every value between 0 and 1, but is
discontinuous everywhere. f: [0, 1]� [0, 1].
f (0)	�

�
; f (�

�
)	 0; f (x)	 x when x is rational and� 0, �

�
;

f (x)	 1� x when x is irrational.
Also, the function of qn 6.19 reaches every value between f (0) and f (x),
but is discontinuous at 0.

17 If f (a)� f (b) but both are integers then, by qn 14, for some c � (a,b),
f (c)	 f (a)��

�
which is not an integer.

18 If f (a)� f (b) but both are rational then, by qn 14, for some c � (a, b),

f (c)	
f (a)��2 f (b)

1� �2

which is irrational. See qn 4.20.

19 (i) If x	 � a �� � b �� 1, then f (x)� 0. If x	 � � a � � � b � � 1, then
f (x)� 0. So there is a real root of the equation x�� ax� b	 0
by the Intermediate Value Theorem. This result may be extended
to any polynomial of odd degree.

(ii) f (0)� 0, f (a)� 0, when a� 1, so by the Intermediate Value
Theorem there is a root � in [0, a]. �� � a	 0, so � 	 ��a. If
a� 1, apply I.V.T. to [0,1].
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20 Choose g(x)	x� f (x) which is continuous, by qn 6.23. Then
g(0)	 � f (0)� 0 and g(1)	 1� f (1)� 0. So g(c)	 0 for some
c � [0, 1], and f (c)	 c.

21 If a and b are any two points in an interval domain of f, then f (a) and
f (b) are two points in the range of f. The Intermediate Value Theorem
says that, for any k, f (a)� k� f (b) or f (a)� k� f (b), there is a
c � [a, b] such that f (c)	 k. So the range is connected and is therefore
an interval.

22 If a� x� b, then f (a)� f (x)� f (b): because if f (a)� f (x) then, for some
c � [x, b), f (c)	 f (a) and f is not one—one; and if f (x)� f (b) then, for
some c � (a,x], f (c)	 f (b) and, again, f is not one—one. Applying this
result to the interval [x, b] we have a� x� y� b implies
f (a)� f (x)� f (y)� f (b), and f is strictly monotonic increasing.
If f (a)� f (b) and f is continuous and one—one, then f is strictly
monotonic decreasing.

23 (i) Yes, immediate consequence of being strictly monotone.
(ii) Yes, consequence of (i) from qns 6.5 and 6.6.
(iii) No. For example, consider f: [0, 2]� [0, 3] given by f (x)	 x on

[0, 1] and f (x)	 x� 1 on (1, 2].

24 Yes, from qn 22.

25 (i) The range is an interval from qn 21. But, for x � [a, b],
f (a)� f (x)� f (b), taking f as increasing. So c	 f (a) and d	 f (b).
If f is decreasing then c	 f (b) and d	 f (a).

(ii) Strictly monotonic functions are one—one and so invertible.
(iii) x� y� f (x)� f (y)� g( f (x))� g( f (y))� f (x)� f (y).
(iv) From qn 5, using completeness.
(v) The sequences are convergent from the continuity of f. They are

increasing and decreasing because f is strictly monotone.
(vi) Let t

�
	 f (x

�
) from below and t

�
	 f (s

�
) from above.

(vii) lim

����

g(t) exists from (iv) and equals g(y) from (vi).

Similarly for the limit from above, so lim

���

g(t)	 g(y) and g is
continuous at y by qn 6.89.

26 f only has an inverse on R�� �0� or on R � R�. On R���0�, x�x� is
continuous by qn 6.29, and strictly monotonic by qn 2.14. The range is
an interval by the Intermediate Value Theorem and is unbounded
above, so f is a bijection.
f��: x��x is continuous and monotonic on R���0�, by qn 25.

27 f is continuous by qn 6.28, strictly monotonic by qn 2.20, and
unbounded above, so f is a bijection. Then f has a continuous inverse
by qn 25.
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28 Let a	 ��x, then

f (x)	
1� x

1� x���
	

1� a�

1� a�
	

1� a� a� � . . .� a���

1� a� a�� . . .� a���
.

As x� 1, a� 1, by the continuity of x� ��x.
Now by qns 6.29, 6.54 and 6.86 lim

���

f (x)	 n/m.

29 The range must be an interval, by qn 21.

30 The only possible ranges are a singleton and a closed interval.

31 (i) None whatsoever. (ii) a� x
�
� b.

(iii) Yes, by qn 4.46, every bounded sequence has a convergent
subsequence.

(iv) By qn 3.78, the closed interval property.
(v) Its limit is f (c). (vi) Take 
	 1.

(vii) Choose n
�
� f (c)� 1, then, from the definition of x

�
,

f (x
��
)� n

�
� f (c)� 1, and this contradicts (vi), so our original

hypothesis was wrong.

32 As in qn 31, but starting from a sequence (x
�
) in the domain of the

function such that f (x
�
)��n.

33 (i) Denominator not zero on Q, so the function is continuous by
qn 6.51.

(ii) Because Q is not complete, a bounded sequence in Q need
not contain a subsequence which converges to a point of Q.

34 (i) From qn 21.
(ii) From qn 31.
(iii) Every non-empty set of real numbers which is bounded above

has a least upper bound: qns 4.80 and 4.81.
(iv) Question 4.64.
(v) Since a�x

�
� b, (x

�
) is bounded, and so must contain a

convergent subsequence by qn 4.46, every bounded sequence
has a convergent subsequence.

(vi) By qn 3.78, the closed interval property.
(vii) Because f is continuous.
(viii) Since � f (x

�
)�M �� 1/n, the limit of the subsequence ( f (x

��
)) is

M, so M	 f (c).
(ix) If infV 	m, construct a sequence (y

�
) such that

m� f (y
�
)�m� 1/n. Argue as in (iv)—(viii).

35 sinx	�1 only when x	 (n��
�
)� which is irrational. But the

domain of the function is dense in R so it attains values arbitrarily
close to �1.
Since Q is not complete, the argument of qn 34(v) fails on Q.
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36 For unbounded domains use the functions of qn 8.
For bounded domains consider x� 1/x on (0, 1) or (0, 1], and for
bounded ranges consider x�x on (0, 1) or (0, 1].

37 � (x� � y�)/(x� y) � 	 �x� y � � � x �� � y � � 20, so
�x� � y� �� 20 �x� y � .

38 �
�
� 1/6. �

�
� 1/20.

� 1/x� 1/a � � 1� � x� a � � �xa � � � � (a� �)a� �� a�/(1� a).
As a gets near to 0, an ever smaller � is required, so there is no one
� for all a.

39 Taking y	 a gives the neighbourhood definition of continuity.

40 For the suggested x and y, �x� y � � 1/n, but � x�� y� �� 2, so
there is no universal � for 
	 2 or less.

41 For the suggested x and y, �x� y � � 1/n�, but f (x)	 0 and
f (y)	 1, so � f (x)� f (y) � 	 1� �

�
, so there is no universal � for


	�
�
.

42 Take �	 
/L.

43 (i) None at all.
(ii) a�x

�
� b.

(iii) Yes, by qn 4.46, every bounded sequence has a convergent
subsequence.

(iv) Yes, use qn 3.54(v), the difference rule, and the fact that
(x

�
� y

�
) is a null sequence.

(v) By qn 3.78, the closed interval property.
(vi) Both tend to f (c).
(vii) For sufficiently large n

�
both � f (x

��
)� f (c) � � �

�

 and

� f (y
��
)� f (c) � � �

�

.

44 f is continuous by qn 26, and therefore uniformly continuous on
[0, 1] by qn 43. � x� y �	 � �x� �y � · ��x��y �� ��x��y �
provided either x or y� 1. To establish uniform continuity on
R���0�, for a given 
, choose the lesser of the � from [0, 1] and
�	 
.

45 Define g(a)	 lim
����

f (x) and g(b)	 lim
��
�

f (x) and then g is continuous

on [a, b] by qn 6.92. So g is uniformly continuous on [a, b] by qn
43 and therefore uniformly continuous on the subset (a, b) where g
coincides with f.
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46 (i) x	 1/�2, (ii) yes, (iii) yes, (v) if (a
�
)� 1/�2 then a continuous g

would make (g(a
�
))� g(1/�2). But, if the sequence (a

�
) only has

rational terms, g(a
�
)	 f (a

�
). However ( f (a

�
))���.

47 (i) If, given 
� 0, � f (x)� f (y) � � 
 when �x� y �� �; for
sufficiently large n, � a

���
� a

�
���, so � f (a

���
)� f (a

�
) �� 
.

(ii) From qn 3.54(v), the difference rule, (a
�
� b

�
) is a null

sequence, so, for sufficiently large n, � a
�
� b

�
� ��, so

� f (a
�
)� f (b

�
) � � 
. Thus ( f (a

�
)� f (b

�
)) is a null sequence.

(iii) By (ii), every rational sequence (a
�
)� a gives a sequence ( f (a

�
))

converging to the same limit. So g(a) is well defined.
(iv) a� a

�
� b

�
� b. � a� b � ��� � a

�
� b

�
� ���

� f (a
�
)� f (b

�
) � � �

�

. For sufficiently large n, � g(a)� f (a

�
) � � �

�



and � f (b
�
)� g(b) � � �

�

. So � a� b � �� � � g(a)� g(b) � � 
.

48 Take a� 1, and work with positive x. Let p, q, r, s � Z�.
(i) p/q� r/s� ps� qr� a��� a��� a���� a���, using qn 2.20.
(ii) ps� qr� g(ps)� g(qr)� g(p/q)� g(r/s) changing from a to b.

From qn 4.41, g(1/n)� L (say) as n��, so, since g is strictly
increasing lim

����

g(x)	 L. Define g(0)	 L.

(iii) a�� a�

x� y
	 a��

a���� 1

x� y �� a��
a�� 1

B � , supposing y� x.

(v) Define f (�x)	 1/f (x).
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Derivatives
Tangents

Preliminary reading: Bryant ch. 4, Courant and John ch. 2.
Concurrent reading: Hart, Spivak ch. 9.
Further reading: Tall (1982).

It is easy enough to say when a straight line is a tangent to a circle or
an ellipse. For these curves, a straight line — infinitely extended — meets
the curve in 0, 1 or 2 points. Each line with a unique point of
intersection is a tangent. However if we try to use such a test to identify
tangents to other curves we are in for a disappointment, and on several
counts.

1 At how many points does the line x	 1 intersect the parabola
y	x�? Draw a sketch. Is this line a tangent to the curve?

2 At how many points does the line y	�2 intersect the cubic curve
y	x�� 3x? Draw a sketch. Is this line a tangent to the curve?

From qn 2 we learn that whether a line is a tangent to a curve or
not is a local question, which must be asked relative to the particular
point of intersection, that is, inside a sufficiently small neighbourhood
of that point.

3 At how many points does the line y	mx intersect the cubic curve
y	x�? For how many values of m might the line be a tangent to
the curve?
Check that the line y	 h�x is the chord joining the two points
(0, 0) and (h, h�) on the curve, provided h� 0.
If h � 0, to what does the slope (or gradient) of the chord tend?

4 Write down the equation of the line with slope m through the point
(a, f (a)).
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Write down the equation of the chord joining the points (a, f (a))
and (a� h, f (a� h)).
If

lim
���

f (a� h)� f (a)

h
	m,

how would you describe the line y� f (a)	m(x� a)?

On the strength of the ideas in qn 4, we will define the derivative of
a function at a point a of its domain.

  

If a is a cluster point of the domain of the real function f and

lim
h�0

f (a� h)� f (a)
h

	m, for some real number m,

then m is called the derivative of f at a, usually denoted by f �(a), and
f is said to be differentiable at a.

The definition is designed to give a formal definition of the slope of
the tangent to y	 f (x) at x	 a, and hence to make it possible to define
analytically what is meant by a tangent to a curve. On a distance—time
graph the slope of a chord gives the average velocity between two
points, while the slope of a tangent gives the velocity at a point.

5 Although the motivation for our study of derivatives has been the
geometric notion of tangent, there is still one circumstance when a
tangent to the graph of a function may exist without a derivative of
the function at the point in question. Examine the definition of
derivative carefully in order to identify the circumstance in
question.

6 If f is a constant function, what is f �(a)?

The attempt to establish a converse to qn 6 exposes some
unexpected subtleties, and will be examined in qn 9.17 using the Mean
Value Theorem.

7 If f (x)	mx� c, what is f �(a)?

You will have noticed in your calculations for qns 6 and 7, how
critical it is that in finding the limit of a function as h� 0 we pay no
regard to the value of that function when h	 0. In fact the ‘slope of the
chord’ function is not defined when h	 0. An equation like h/h	 1 is
only valid when h� 0.
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8 Show that the two limits

lim
���

f (a� h)� f (a)

h
, and lim

���

f (x)� f (a)

x� a
,

are equivalent.

9 If f (x)	x�, what is f �(a)?

Sums of functions

10 If two real functions f and g are both differentiable at a, prove
using qn 6.93, on the algebra of limits, that the function f� g
defined by f� g: x� f (x)� g(x) is differentiable at a, and that

( f� g)�(a)	 f �(a)� g�(a).

Explain how this result may be generalised to show that the sum of
n real functions, each differentiable at a, is also differentiable at a.

11 If f is differentiable at a, and g(x)	 k · f (x), prove that
g�(a)	 k · f �(a).

Questions 10 and 11 give linearity in determining derivatives, in the
sense that if the functions f and g are differentiable at a, then the
function given by x� l · f (x)�m · g(x) has derivative

l · f �(a)�m · g�(a) at a.

The product rule

12 By considering the product

f (x)� f (a)	
f (x)� f (a)

x� a
· (x� a), when x� a,

and, using qn 6.93, on the algebra of limits, show that if the real
function f is differentiable at a, then f is continuous at a.

13 If two real functions f and g are both differentiable at a, prove
using qns 6.93 and 12 that the function f · g defined by
f · g: x� f (x) · g(x) is differentiable at a, and that

( f · g)�(a)	 f (a) · g�(a)� f �(a) · g(a).

14 Prove by induction that, if f (x)	 x�, then f �(a)	 n · a���, for any
positive integer n.
Obtain the same result by considering the equation
x�� a�	 (x� a)(x���� x���a�x���a�� . . .�� a���).
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15 By using qns 10, 11 and 14 find f �(a) when
f (x)	 b

�
� b

�
x� b

�
x� � . . .� b

�
x�.

16 If f (x)	 1/x�, prove that f �(a)	� n/a���, for any positive integer n,
provided a� 0.

The quotient rule

17 If two real functions f and g are both differentiable at a, prove
using qns 6.93 and 12 that the function f/g defined by
f/g: x� f (x)/g(x) is differentiable at a, that

�
f

g�
�
(a)	

g(a) · f �(a)� f (a) · g�(a)
(g(a))�

,

provided g(a)� 0.

The chain rule

18 If the real function g is differentiable at a, and the real function f is
differentiable at g(a), we seek to prove that the composite function
f � g defined by f � g: x� f (g(x)) is differentiable at a, and that

( f � g)�(a)	 f �(g(a)) · g�(a).

(i) First suppose that there is a neighbourhood of a in which
g(x)� g(a), unless x	 a, and use the continuity of g at a and
the equation

f (g(x))� f (g(a))

x� a
	
f (g(x))� f (g(a))

g(x)� g(a)
·
g(x)� g(a)

x� a
,

for x� a, to prove the result.
(ii) If in every neighbourhood of a there are points x such that

g(x)	 g(a), the cancellation on which part (i) is based cannot
be carried out. For this case only, we construct an argument
establishing the chain rule by showing that each side of the
equation ( f � g)�(a)	 f �(g(a)) · g�(a) is 0.
Suppose that in every neighbourhood of a there are points
x� a for which g(x)	 g(a).
Let A	 �x � g(x)	 g(a),x� a� and let

G(x)	
g(x)� g(a)

x� a
, for x� a.

Since g is differentiable at a, for any sequence (a
�
)� a with

a
�
� a, in the domain of g, (G(a

�
))� g�(a).
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Construct such a sequence in A and deduce that g�(a)	 0, so
the right-hand side of the equation is 0. Let

F(x)	
f (g(x))� f (g(a))

x� a
, for x� a.

Let (a
�
) be any sequence tending to a, with a

�
� a, in the

domain of f � g. We seek to show
(F(a

�
))� 0	 f �(g(a)) · 0	 f �(g(a)) · g�(a) as n��.

Each a
�
is either in A or not.

If there is a subsequence of terms of (a
�
) in A, use the

argument for G, above, to show that for these a
�
, (F(a

�
))� 0.

If there is a subsequence of terms of (a
�
) not in A, use the

algebra of part (i) and the product rule for sequences to show
that, for these a

�
, (F(a

�
))� f �(g(a)) · g�(a)	 0.

Deduce that, in any case, (F(a
�
)) is a null sequence, and that

this establishes the required limit.

Differentiability and continuity

19 Sketch the graph of the real function f given by f (x)	 � x � . For this
function find

lim
����

f (h)� f (0)

h
and lim

����

f (h)� f (0)

h
.

Deduce that f is not differentiable at x	 0.

20 (Cauchy, 1821) Define the function f: R � R by

f (x)	 sin(1/x) when x� 0,

f (0)	 k.
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By considering the two null sequences (1/2n�) and (1/(2n��
�
)�)

prove that the function f is not continuous at x	 0 whatever value
k may have.

21 (Weierstrass, 1874) Define the function f: R � R by

f (x)	 x sin(1/x) when x� 0,

f (0)	 0.

Using the fact that � � x � � f (x)� �x � for all x, and qn 6.36, prove
that f is continuous at x	 0.
Prove from the definition of derivative that f is not differentiable at
x	 0.

22 Define the function f: R � R by

f (x)	 x� sin(1/x) when x� 0,

f (0)	 0.

By methods similar to those of qn 21, prove that f is continuous at
x	 0.
Prove also that f is differentiable at x	 0.
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In qn 12 we proved that a function that is differentiable at a point
is necessarily continuous at that point. We now have two examples (in
qns 19 and 21) which illustrate that the converse of this theorem is
false. In fact the independence of differentiability and continuity is
remarkable, for a function may be continuous at every point and
differentiable at no points, and such a function, constructed by Tagaki
in 1903, with some aspects illustrated by Spivak (page 423) and
rediscovered by David Tall (1982), is examined in qn 12.46.

23 If a function f is differentiable at the point a, prove that

lim
���

f (a� h)� f (a� h)

2h
	 f �(a).

Give an example to show that this limit may exist when f is not
differentiable at a.

When we have a formal definition, however well it seems to match
our intuition, it is important to press the meaning of that definition as
far as possible. We therefore ask a question which focuses on
differentiability at a single point, by considering functions which are, for
the most part, not continuous, and therefore not differentiable.

24 The real functions f, g and h are defined on R, such that

rational

irrational

f (x)	�
0

1

when x is irrational,

when x is rational;
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0

irrational

rational

g(x)	�
0

x

when x is irrational,

when x is rational;

0

rational

irrational

h(x)	�
0

x�

when x is irrational,

when x is rational.

Clearly none of these functions is continuous when x� 0, as in
6.20, and therefore none is differentiable when x� 0.
Determine whether either f, g or h is
(i) continuous at x	 0; (ii) differentiable at x	 0.

Another conflict with intuition comes with the discovery that a
function with a positive derivative at a point need not be increasing in
any neighbourhood of that point.

25 (i) Use the methods of qn 22 to show, for the function defined by
f (x)	 x� sin(1/x�) when x� 0, and f (0)	 0, that f �(0)	 0, but
that f �(x) takes arbitrarily large values near x	 0.

(ii) Draw the graphs of y	 x� 2x� and y	x� 2x� near the
origin. Define the function f by

f (x)	 x� 2x� cos(1/x) when x� 0

f (0)	 0.
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Use the method of qn 22 to show that f �(0)	 1.
Prove that f is not increasing in any neighbourhood of 0 by
showing that f (1/2n�)� f (1/(2n� 1)�) for any n � Z�. Show
also that f �(1/(2n��

�
)�)	�1.

Derived functions

26 For the real function f given by f (x)	 �x � , which is defined for all
x � R, find the subset of the domain which consists of those points
of R at which f is differentiable.

If a real function f: A� R is differentiable at each point of a subset
B�A, with B maximal, we define the derived function of f, f �: B� R by
f �: x� f �(x), and we say that f is differentiable on B.

27 Sketch the graph of the derived function of f where f is defined by
f (x)	 � x � .

28 Sketch the graph of the function given by f (x)	 x�� 2x� 2 and of
its derived function. How does the point where the graph of the
derived function cuts the x-axis relate to the shape of the graph of
f ?

29 Define the terms local maximum and local minimum in such a way
that they describe respectively the points (�1, 5) and (1, 1) on the
graph of the real function defined by f (x)	x� � 3x� 3. What is
f �(�1) and f �(1)?

30 If a real function f has a local maximum or a local minimum at a
point a of its domain, and f is differentiable at a, prove that
f �(a)	 0 by considering limits from above and below.

31 Give an example of a function f which shows that it is possible to
have f �(a)	 0 without the function f having a local maximum or a
local minimum at a.
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32 Give an example of a function f which shows that it is possible for
the function to have a local maximum at x	 a without being
differentiable at a.

Questions 15 and 17 enable us to find derived functions for
polynomials and rational functions. In chapter 11 we will give a formal
definition of logarithmic and exponential functions and obtain
log� (x)	 1/x, for positive x, and exp� (x)	 exp (x), for all real x, and we
will give a formal definition of the circular (or trigonometric) functions
sine and cosine and obtain sin� (x)	 cos (x) and cos� (x)	�sin (x) for
all real x.

According to the Leibnizian description of derived functions, when,
for example, y	x�,

dy

dx
	 3x�.

For the product rule the Leibnizian expression is

d(uv)

dx
	 u ·

dv

dx
� v ·

du

dx
.

For the quotient rule the Leibnizian expression is

d�
u

v�
dx

	

v ·
du

dx
� u ·

dv

dx

v�
.

The notation of Leibniz is particularly suggestive when describing the
chain rule:

dy

dx
	
dy

du
·
du

dx
.

33 Apply the chain rule to find the derived function of f where
f (x)	 sinx� by considering y	 sin u and u	 x�.

34 Give algebraic expressions for the derived function f � of qn 22.
Is the function f � continuous at x	 0?

Second derivatives

35 A real function f is defined by

f (x)	
0 when x� 0,
x when 0�x� 1,
�
�
x�� �

�
when 1�x.�
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Sketch the graphs of (i) f, (ii) f �, (iii) the derived function of f �.

When the real function f: A� R has a derived function f �: B� R, and
the derived function f �: B� R has a derived function ( f �)�: C� R, with
C�B�A, we write ( f �)� 	 f 
 and call f 
 the second derivative of f.

When f 
(a) exists, we say that f is twice differentiable at a.

36 How do you know that, when f 
(a) exists, f � is continuous at a?

37 A function f: R � R is defined by

f (x)	�
�x�

x�

when x� 0 and

when x� 0.

Determine whether

(i) f is continuous at 0,
(ii) f �(0) exists,
(iii) f � is continuous at 0,
(iv) f 
(0) exists.

38 Define the third derivative of f, and inductively, the nth derivative of f,
which is written f 
��.

Inverse functions

39 Find the derivative of the function f given by f (x)	�x at some
point a� 0, from first principles. The function f is continuous at a
from qn 6.27.
If g(x)	x�, attempt to relate f �(a) to g�( f (a)).

40 If the real function f: A�B is a bijection, and g: B�A is its
inverse, so that f (g(b))	 b for any b �B, and g( f (a))	 a for any

213Inverse functions



a �A, and if further we suppose that f is differentiable at a, and g is
differentiable at f (a), use the chain rule to prove that

g�( f (a))	
1

f �(a)
.

The Leibnizian expression is again particularly suggestive here:

dx

dy
	 1��

dy

dx� .
41 If f and g are inverse functions as in qn 40, and f �(a)	 0, prove that

g cannot be differentiable at f (a).
Indicate by a sketch why this should be expected and relate your
answer to qn 5.

42 Let f be a continuous bijection f: A�B where A and B are open
intervals, and let g: B�A be the inverse of f. We saw in qn 7.25
that g is also a continuous bijection. Now suppose that at some
point a �A, f is differentiable and f �(a)� 0.

(i) Prove that

lim
���

g( f (x))� g( f (a))

f (x)� f (a)
	

1

f �(a)
.

(ii) Now let f (a)	 b, and let (b
�
) be a sequence in B which tends

to b, but which does not contain any term equal to b.
Why must there exist a unique a

�
�A, a

�
� a, such that

f (a
�
)	 b

�
?

(iii) Use the continuity of g to prove that (a
�
)� a.

(iv) Use the limit above to prove that

�
g(b

�
)� g(b)

b
�
� b ��

1

f �(a)
, as n��.

(v) Deduce that g is differentiable at f (a).

The only definition or theorem in this chapter which depends on
the Completeness Principle is qn 42. Completeness is needed for part
(iii). This was necessary because, on rational domains, differentiable
bijections do not have to have continuous inverses. See Körner (1991).

43 If the function f is defined by f (x)	x� for x� 0 and a positive
integer n, identify the inverse function f��, and find its derived
function.
If, for positive x, and positive integers p and q, we define

x���	 (x�)���,
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use the chain rule to evaluate the derived function for x �x���.
Extend this result to show that for any rational number r� 0, the
derived function of g, where g(x)	x�, for positive x, is given by
g�(x)	 rx���.
For what rational numbers r is g differentiable at x	 0?

44 Find a maximal interval domain containing zero for which the sine
function has a well-defined inverse. Find the derived function of this
inverse function (known as arcsine) and state the maximal interval
domain for this derived function. You may use any of the
properties of the circular functions which are established in chapter
11.

45 Defining tanx	 (sinx)/(cosx), provided cos x� 0, identify a
maximal interval domain containing zero for which the tangent
function has a well-defined inverse. Find the derived function of this
inverse function (known as arctan) and state the maximal domain
for this derived function. You may use the properties of the circular
functions established in chapter 11.

Derivatives at end points

We say that a function f is differentiable on a set A when f is
differentiable at each point of A. If A is an open interval, the meaning is
clear enough, since an open interval contains a neighbourhood of each
of its points. But functions such as x��x may be defined on [0,�)
and in such a case it may be important to be able to affirm or deny the
differentiability of the function at 0.

46 Look back to the definition of derivative and propose a criterion to
determine whether a function f: [a, b]� R is differentiable at a.
Modify your criterion to determine differentiability (or otherwise) at
b.

Summary

Definition
qn 4

If a is a cluster point of the domain of a real
function f, then, when the limit

lim
���

f (x)� f (a)

x� a

exists, f is said to be differentiable at a and the
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value of the limit is denoted by f �(a).
Theorem

qn 12
If a function f is differentiable at a, then f is
continuous at a.

Theorem If functions f and g are both differentiable at a,
then

The sum rule qn 10 ( f� g)�(a)	 f �(a)� g�(a),
The product rule

qn 13
( f · g)�(a)	 f (a) · g�(a)� f �(a) · g(a),

The quotient rule
qn 17

and ( f/g)�(a)	 ( f �(a) · g(a)� f (a) · g�(a))/(g(a))�,
provided g(a)� 0.

Theorem
qn 15

If f (x)	 b
�
� b

�
x� b

�
x� � . . .� b

�
x�,

then f �(a)	 b
�
� 2b

�
a� 3b

�
a�� . . .� nb

�
a���.

The chain rule
qn 18

If the function g is differentiable at a and the
function f is differentiable at g(a), then
( f � g)�(a)	 f �(g(a)) · g�(a).

Definition
qn 29

A function f is said to have a local maximum at
a if, for all x in some neighbourhood of a,
f (x)� f (a). A function f is said to have a local
minimum at a if for all x in some neighbourhood
of a, f (x)� f (a).

Theorem
qn 30

If the function f has a local maximum or a local
minimum at a, and f is differentiable at a, then
f �(a)	 0.

Definition
qns 36, 38

If f: A� R is differentiable at each point of
B�A, then f �: B� R is called the derived
function or derivative of f.
By induction we define the nth derivative of f,
denoted by f 
��, as the derivative of f 
����.

Theorem
qn 40

If f is a bijection and g is its inverse, and if f is
differentiable at a and g is differentiable at f (a),
then g�( f (a))	 1/f �(a).

Historical note

From one point of view, most of the material of this chapter was
known by mathematicians before Newton’s creative burst in 1664—6.
From another point of view, none of the results of this chapter were
proved in the sense in which we take them today until the time of
Weierstrass, 1860—70.

The essential backcloth to the calculus is Descartes’ method of
converting geometric problems into algebraic ones (coordinate
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geometry) and his notation for exponents (1637), which we use today.
Fermat (about 1640) knew how to find the slope of the tangent to the
graph of a polynomial using the limit of the slope of a chord, and
found maxima and minima by examining the slope of the chord near
the point. There were in fact a host of special methods for dealing with
special curves.

Both Newton (when he was away from Cambridge for fear of the
plague) in 1665 and 1666, and Leibniz in Paris in 1675, working
independently, systematically established the product, quotient and
chain rules and discovered the inverse relationship between slopes of
tangents and areas under curves. Having discovered the Binomial
Theorem for rational index, Newton was strongly motivated by what he
could do by differentiating and integrating power series term by term.
Newton considered his variables as real entities which were changing
with time, and he expressed the derivative of the ‘fluent’ x, as the
‘fluxion’ x� . Leibniz had originally been motivated by the use of
differences in summing series (as in qns 5.3 and 5.4). In this notation, dx
originally meant the difference between x and its next value, and dy/dx
was originally a ratio of infinitesimals. Leibniz’ great discovery was of
the results he could generate using the characteristic triangle with sides
dx, dy and ds. Leibniz’ dy/dx was expressed by Newton in the form y� /x� .

The first calculus book was published in 1696. This was Analyse des
infiniments petits by the Marquis de l’Hôpital. It was repeatedly
reprinted during the eighteenth century. The book consists of lectures
on the differential calculus which Johann Bernoulli gave to de l’Hôpital
in 1691, on Leibniz’ work. A little of Newton’s calculus appeared in his
Principia (1687), much more was in the appendix to his Opticks (1704),
but his original exposition De Analysi (written in 1669 and circulated to
friends) was not published until 1736, after his death. Both Newton and
Leibniz originally thought of limits in terms of infinitesimals, but later
in life tried to avoid them. Newton spoke of prime and ultimate ratios
(the slope of the chord and tangent respectively). Leibniz eventually
came to speak of infinitesimals as convenient fictions.

In Bishop Berkeley’s tract of 1734, the apparently self-contradictory
nature of limits was highlighted. In affirming that, as x tends to a,
(x�� a�)/(x� a) tends to 2a, x is not equal to a at the beginning of the
computation, and this allows the division to be performed, and then x
is put equal to a at the end of the computation to obtain the answer.
This paradox was not resolved during the eighteenth century, but it did
not discourage mathematicians in their work. Indeed, an immediate
chronological successor to Bishop Berkeley was L. Euler, the most
ingenious manipulator of infinitesimals there has ever been. Berkeley’s
criticisms were not forgotten and in 1764 d’Alembert offered the useful
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notion of the value of the function differing from the limit ‘by as little
as one wishes’, a phrase which was taken up by Cauchy.

The origin of both Newton’s and Leibniz’ calculus was geometric
and it was only late in the eighteenth century that J. L. Lagrange (1797)
tried to make algebraic definitions of its fundamental notions. Having,
as he thought, proved that every function has a Taylor series he showed
that f (a� h)	 f (a)� hf �(a)� hr(h) where r(h) tends to 0 as h tends to 0,
seemingly without reference to infinitesimals, and used this to prove (the
need for proof being itself a remarkable insight) that a differentiable
function with positive derivatives was increasing. It was a small step
from this to Cauchy’s methods. It is to Lagrange that we owe the
notion of the derived function f �(x) as against the ratio of infinitesimals
dy/dx, and also the word derivative.

In 1823, Cauchy offered an 
� � neighbourhood description of
derivatives, and this largely resolved the problem of the definition of
limits and therefore made it possible to construct rigorous proofs using
limits. Cauchy used infinitesimals, but he defined them as variables
which were tending to zero, not as indivisibles as they had been
considered in the seventeenth century. However, continuous functions
were the context of Cauchy’s work on differentiation, so that the
proposition that a differentiable function was necessarily continuous
was for Cauchy a matter of definition, not a theorem. Indeed some
followers of Cauchy believed that they had successfully proved that
continuous functions must be differentiable! Also Cauchy’s functions
were continuous, or differentiable, on intervals, so that he did not
conceive of a function that was defined everywhere, but continuous at
only one point. Defining continuity and differentiability in terms of the
behaviour of functions at a single point followed the work of Riemann
(1854) and Weierstrass (1860). Likekwise until the time of Weierstrass,
with the awareness of the completeness of the real numbers and of the
possibility of continuous but non-differentiable functions, it was not
realised that the result of our qn 42 was distinct from that of qn 40 on
the invertibility of derivatives.

The advent of rigour did not come to the calculus all at once.
Distinguished mathematicians in the twentieth century have failed to
provide a rigorous treatment of the chain rule. (See Hardy, 9th edition,
ch. 6, §114.)
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Answers

1 One. No.

2 Two. Yes.

3 Three if m� 0. One if m� 0. Only m	 0. Slope� 0.

4 y� f (a)	m(x� a).

y� f (a)	
f (a� h)� f (a)

h
(x� a). With the given m this is a tangent.

5 There may still be a tangent when the slope of the chord� �.

6 f �(a)	 0.

7 f �(a)	m.

8 If, given 
 � 0, 0� � h �� �� �
f (a� h)� f (a)

h
� l �� 


then 0� �x� a �� � � �
f (x)� f (a)

x� a
� l �� 
; and conversely.

9 2a.

10 Generalise by induction as in qn 6.25.

11 g(x)� g(a)

x� a
	 k ·

f (x)� f (a)

x� a
and use qn 6.93, the algebra of limits.

12 By qn 6.93, the algebra of limits, lim

���

f (x)� f (a)	 f �(a) · 0.

So lim

���

f (x)	 f (a) and f is continuous at a by qn 6.89.

13 f (x) · g(x)� f (a) · g(a)

x� a
	 f (x) ·

g(x)� g(a)

x� a
� g(a) ·

f (x)� f (a)

x� a
.

This tends to f (a) · g�(a)� g(a) · f �(a) by qn 6.93, the algebra of limits,
and the continuity of f.

14 Trivial for n	 1. If f (x)	 x�� f �(a)	 na���, then for g(x)	 x�x,
g�(a)	 a� · 1� na��� · a	 (n� 1)a� by qn 13.

lim

���

x���� x���a� . . .� a��� 	 a��� � a��� � . . .� a��� 	 na��� by

qn 6.93, the algebra of limits.

15 f �(a)	 b
�
� 2b

�
a� 3b

�
a� � . . .� nb

�
a���.

16 f (x)� f (a)

x� a
	

1/x�� 1/a�

x� a
	

a�� x�

a�x�(x� a)
�

�na���

a�a�
, using qn 14.
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17 f (x)/g(x)� f (a)/g(a)

x� a
	
f (x) · g(a)� f (a) · g(x)

g(x) · g(a) · (x� a)

	
g(a)( f (x)� f (a))� f (a)(g(x)� g(a))

g(x) · g(a) · (x� a)

which gives the required result by qn 6.93, the algebra of limits, and the
continuity of 1/g at a.

18 (ii) lim

���

g(x)� g(a)

x� a
	 g�(a).

If, in every neighbourhood of a, there are points x� a such that g(x)	 g(a)
then g�(a)	 0: because,

G(a
�
)	 0 for all a

�
�A

19 First limit	 1, second limit	�1, so two-sided limit does not exist.

20 If a
�
	 1/(2n�) then f (a

�
)	 0. If b

�
	 1/((2n� �

�
)�) then f (b

�
)	 1.

So ( f (a
�
)) and ( f (b

�
)) have different limits and therefore f is not continuous

at 0 whatever the value of f (0). Compare with qn 6.19.

21 x� �x � is continuous by qn 6.32.
x� � �x � is continuous, by qns 6.32 and 6.26.
So f is continuous, by qn 6.36. But

f (x)� f (0)

x� 0
	 sin

1

x
, for x� 0,

and this has no limit as x� 0.

22 x� x� and x��x� are both continuous, by qn 6.29.
�x�� f (x)�x� so f is continuous at x	 0, by qn 6.36.

f (x)� f (0)

x� 0
	x sin

1

x
when x� 0 and from qn 21 this� 0 as x� 0.

23 If lim

���

f (a� h)� f (a)

h
	 f �(a),

then lim

���

f (a� h)� f (a)

�h
	 f �(a). Add.

The result follows from qn 6.93, the algebra of limits.
The limit exists when a	 0 for f (x)	 �x � , but this function is not
differentiable at 0 by qn 19.

24 None of these functions is continuous when x� 0, using arguments like
that of qn 6.20.
Because f is not continuous at 0 by qn 6.20, f is not differentiable at 0 by
qn 12.
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The function g is continuous at 0 by qn 6.35. But g is not differentiable at
x	 0 because

g(x)� g(0)

x� 0
	 f (x) when x� 0,

and f has no limit as x� 0.
Since 0� h(x)�x� for all x, h is continuous at 0 by qn 6.36.

h(x)� h(0)

x� 0
	 g(x) when x� 0, and lim

���

g(x)	 g(0)

so h is differentiable at 0.

25 (i) ( f (x)� f (0))/(x� 0)	x sin(1/x�) which tends to 0 as x tends to 0, as
in qn 21. When x� 0, f �(x)	 2x sin(1/x�)� 2/x cos(1/x�).
f �(1/�(2n� 1)�)	 2�((2n� 1)�).

(ii) f (x)� f (0)

x� 0
	 1� 2x cos

1

x
� 1 as x� 0, as in qn 21.

f�
1

2n��� f�
1

(2n� 1)���
1

2n
�

2

4n��
�

1

2n� 1
�

2

(2n� 1)��
,

�
2

��2�
1

4n�� 2n�� 1.

When x� 0, f �(x)	 1� 4x cos(1/x)� 2 sin(1/x).
When f � is positive throughout an interval, this counter-intuitive possibility
cannot occur, as we shall see in the next chapter.

26 R��0�.

27 When x� 0, f �(x)	 1. When x� 0, f �(x)	�1.

28 f �(1)	 0. f (x)� f (1) for all x. So f (1) is the minimum value of the function.

29 If for all x in some neighbourhood of a, f (x)� f (a) then f has a local
maximum at a. If for all x in some neighbourhood of a, f (x)� f (a) then f
has a local minimum at a. f �(�1)	 f �(1)	 0.

30 If f has a local maximum at a then in some neighbourhood of a

f (x)� f (a)

x� a
� 0 when x� a, and

f (x)� f (a)

x� a
� 0 when x� a.

Therefore lim

����

f (x)� f (a)

x� a
� 0 and lim

����

f (x)� f (a)

x� a
� 0.

Since the two-sided limit exists it equals 0.
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31 f (x)	x� at x	 0.

32 For example, x�� �x � at x	 0.

33 f �(x)	 (cosx�)(2x).

34 f �(x)	 2x sin(1/x)� cos(1/x), when x� 0,
f �(0)	 0.
f � is not continuous at 0, since x� cos(1/x) is like the function in qn 20.
So f � is not differentiable at 0.

35 f has domain R. f � has domain R��0�. f 
 has domain R��0, 1�.

36 Apply qn 12 to f �.

37 Consider limits from below and limits from above at 0.
(i) Yes. (ii) Yes. (iii) Yes. (iv) No.

38 f - is the derived function of f 
.
f 
�� is the derived function of f 
����.

39 f (x)� f (a)

x� a
	

1

�x��a
�

1

2�a
as x� a.

So f �(a)	 1/(2�a) and g�( f (a))	 2�a.

41 g�( f (a)) · f �(a)	 1. But if f �(a)	 0, there is no possible value for g�( f (a)).
Consider the graphs of the functions f and g in qn 39 at 0.

42 (i) g( f (x))� g( f (a))

f (x)� f (a)
	

x� a

f (x)� f (a)
	 1��

f (x)� f (a)

x� a � .
Use the fact that f �(a) exists and is non-zero, with qn 6.93, the
algebra of limits.

(ii) Because f is a bijection.
(iii) (b

�
)� b by definition. This may be rewritten ( f (a

�
))� f (a).

By the continuity of g at b	 f (a), (g( f (a
�
)))� g( f (a)). So (a

�
)� a.

(iv) From the limit in (i),

�
g( f (a

�
))� g( f (a))

f (a
�
)� f (a) ��

1

f �(a)
,

so

�
g(b

�
)� g(b)

b
�
� b ��

1

f �(a)
.

(v) From the definition of (b
�
), limits from above and below b exist and

are equal, so the two-sided limit

lim

��


g(y)� g(b)

y� b
	

1

f �(a)
.

Thus g�( f (a)) exists and equals 1/f �(a).
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43 If f (x)	x�, then f��(x)	 ��x. From qn 42, f�� is differentiable except at 0.
f���(a)	 f���( f ( ��a))	 1/f �( ��a)	 1/(n( ��a)���)	 (1/n)a
������.
Now let P(x)	x� and Q(x)	 x���, then Q(P(x))	x���.
(Q �P)�(x)	Q�(P(x)) ·P�(x)	 (1/q)(x�)
������px��� 	 (p/q)x
������.
Use qn 17 to extend to negative rational indices.
g is differentiable at x	 0 provided r� 1.

44 [��
�
�, �

�
�]� [�1, 1].

sin�(arcsinx) · arcsin�x	 1, so arcsin�x	 1/cos(arcsinx)	 1/�(1�x�).

45 (��
�
�, �

�
�). tan�x	 (cos�x� sin�x)/(cos�x)	 1� tan�x.

tan�(arctanx) · arctan�x	 1, so arctan�x	 1/(1�x�).

46
f: [a, b]� R is differentiable at a if lim

����

f (x)� f (a)

x� a
exists and is finite.

Use the limit from below for b.
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9

Differentiation and completeness
Mean Value Theorems, Taylor’s Theorem

Concurrent reading: Burkill ch. 4 and §5.8, Courant and John ch. 5.
Further reading: Spivak chs 11, 19.

Both Rolle’s Theorem and the Mean Value Theorem are geometrically
transparent. Each claims, with slightly more generality in the case of the
Mean Value Theorem, that for the graph of a differentiable function,
there is always a tangent parallel to a chord. It is something of a
surprise to find that such intuitive results can lead to such powerful
conclusions: namely, de l’Hôpital’s rule and the existence of power
series convergent to a wide family of functions.

Rolle’s Theorem

1 Sketch the graphs of some differentiable functions

f: [a, b]� R,

for which f (a)	 f (b).
Can you find a point c, with a� c� b, such that f �(c)	 0, for each
function f which you have sketched?
What words could you use to describe the point c in relation to the
function f ?

2 Must any differentiable function

f: [a, b]� R

have a maximum and a minimum value? Why?
Must any such function, for which f (a)	 f (b), have a maximum and
a minimum value in the open interval (a, b)?
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3 If f: [a,b]� R is differentiable and, for some c such that
a� c� b, f (x)� f (c) for all x � [a, b], must f �(c)	 0? Why?

4 If f: [a,b]� R is differentiable,
f (a)	 f (b),
M	 sup� f (x) � a�x� b�,

and m	 inf� f (x) � a�x� b�,
use qn 2 to show that there is a c with a� c� b for which
f (c)	M, or a c for which f (c)	m, or possibly distinct cs satisfying
each of these conditions.
Deduce from qn 3 that f �(c)	 0.

5 Sketch the graph of a continuous function

f: [a, b]� R

which is differentiable on the open interval (a, b), but not
differentiable at the points a or b.

6 Identify the two places in the proof of the result of qn 4 at which
the differentiability of the function f has been invoked.

7 Rolle’s Theorem
If the function f: [a, b]� R satisfies the conditions

(i) f is continuous on [a, b],
(ii) f is differentiable on (a, b),
(iii) f (a)	 f (b),

show that there is a point c in the open interval (a, b) such that
f �(c)	 0.

8 Sketch the graphs of functions for which one or more of the
conditions (i), (ii) and (iii) in qn 7 fail, illustrating how the
conditions are necessary for Rolle’s Theorem, and also how, even in
their absence, there may still exist a point c � (a, b) for which
f �(c)	 0.

9 If a
�
� a

�
/2� a

�
/3� . . .� a

�
/(n� 1)	 0, prove that the

polynomial function

x� a
�
� a

�
x� a

�
x�� . . .� a

�
x�

has a zero in the interval [0, 1].

10 If the function f: R � R is twice differentiable and
f (a)	 f (b)	 f (c)	 0, with a� b� c, prove that for some d � (a, c),
f 
(d)	 0. Generalise.
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11 (i) The function f: Q � Q is defined by f (x)	 1/(x�� 2)�.
Show that the function f satisfies the conditions (i), (ii) and (iii)
of qn 7 on [0, 2]� Q. Why does the conclusion of Rolle’s
Theorem fail in this case?

(ii) The function g: Q � Q is defined by g(x)	 x�� 21x� 20.
Show that the function g satisfies the conditions (i), (ii) and
(iii) of qn 7 on [1, 4]� Q. Why does the conclusion of Rolle’s
Theorem fail in this case?

An intermediate value theorem for derivatives

Although we have seen that differentiable functions do not
necessarily have continuous derivatives (in qn 8.34), derivatives have an
intermediate value property which we might only expect from a
continuous function. So the Intermediate Value property cannot be
used to define continuity.

12 (Darboux’s Theorem, 1875) If [a, b] is contained in the domain of a
real differentiable function f and f �(a)� k� f �(b), determine whether
the function g defined by

g(x)	 f (x)� kx

is
(i) a real function which is continuous on [a, b],
(ii) a function which is bounded and attains its bounds on [a, b],
(iii) a function which is differentiable on [a, b],
(iv) a function which is not constant on [a, b].

Determine the derivative of g at a point where it attains a bound,
and deduce that, for some c in the open interval (a, b), f �(c)	 k.
Check the compatibility of this result with the differentiable
function in qn 8.22 having discontinuous derivative, using graph
drawing facilities on a computer.

The Mean Value Theorem

The next question looks at a slanted version of Rolle’s Theorem,
and identifies conditions under which an arc has a tangent parallel to a
chord joining two points of the arc.

13 A function f: [a, b]� R is continuous on the closed interval [a, b]
and differentiable on the open interval (a, b).

(i) Construct a function D which measures the distance (in a
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direction parallel to the y-axis) between the graph of the
function f and the chord joining (a, f (a)) to (b, f (b)). Does D
satisfy the conditions of Rolle’s Theorem? What is the result
of applying Rolle’s Theorem to D, when expressed in terms of
the function f ?

(ii) Let the slope of the chord from (a, f (a)) to (b, f (b)) be

f (b)� f (a)

b� a
	K.

Define the function F: [a, b]� R by

F(x)	 f (b)� f (x)�K(b�x).

Check that F satisfies the conditions of Rolle’s Theorem on
[a, b].
Apply Rolle’s Theorem to the function F, to obtain a value
for K in terms of the function f �.

You should have obtained the same result from qn 13(i) and 13(ii).
This result is called the Mean Value Theorem. One application is that,
on a continuous and smooth journey, the average speed of the journey
must actually be reached at least once during the journey. While this
result looks obvious enough, it has powerful and significant
applications.

14 Show that the conclusion of the Mean Value Theorem applied to a
function f on an interval [a, a� h] may be expressed by saying
that, under the appropriate conditions, there is a �, with 0� �� 1,
such that f (a� h)� f (a)	 hf �(a� �h).

15 A function f: [a, b]� R is continuous on the closed interval [a, b]
and differentiable on the open interval (a, b).
Prove that if f �(x)� 0 for all values of x in (a, b), then the function f
is strictly monotonic increasing.
Show also that if f �(x)� 0 for all values of x, then the function f is
strictly monotonic decreasing.

(16) Functions f
�
, f

�
, f

�
and f



are defined on [0, 2�] by

f
�
(x)	x� sin x, f

�
(x)	 cosx� 1�

x�

2
,

f
�
(x)	 sin x�x�

x�

6
, f



(x)	 1�

x�

2
�
x


24
� cos x.

Prove that each of these four functions is strictly increasing on the
given domain.
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Deduce that

x� sinx�x�
x�

6
,

and

1�
x�

2
�
x


24
� cosx� 1�

x�

2
, on (0, 2�).

Use graph-drawing facilities on a computer to compare the graphs
of sine and cosine with those of the polynomials given here.

17 A function f: [a, b]� R is continuous on the closed interval [a, b]
and differentiable on the open interval (a, b).
Prove that if f �(x)	 0 for all values of x, then the function f is
constant.
Construct a real function f which is not constant, but for which
f �(x)	 0 for every point x of its domain.

18 A function f: [a, b]� [a, b] is continuous on the closed interval
[a, b] and differentiable on the open interval (a, b).
If � f �(x) �� L for all values of x, prove that

� f (x)� f (y) �� L · �x� y � for all x and y in the domain,

so that f satisfies a Lipschitz condition, and is uniformly continuous
as in qn 7.42.
If a sequence (a

�
) is defined in [a, b] by a

���
	 f (a

�
), prove that

� a
���

� a
���

� � L� � a
�
� a

�
� � L� � b� a � .

If, further, L � 1, deduce that (a
�
) is a Cauchy sequence, and hence

convergent.
If (b

�
) is a sequence in [a, b] defined by b

���
	 f (b

�
) and (a

�
)�A,

and (b
�
)�B, explain why A and B lie in [a, b], why f (A)	A and

f (B)	B, and prove that A	B.

The condition � f �(x) � � 1, makes the function f an example of a
contraction mapping of the domain, which, as we have shown, has a
unique fixed point, satisfying f (x)	x. This result is particularly useful
for calculating better approximations to the roots of given equations
and provides a reason for the convergence of sequences defined by an
iterative formula.

19 Prove that the equation x	 cosx has exactly one root in the
interval [0, �

�
�].

20 Prove that the function defined by f (x)	�(x� 2) is a contraction
mapping on the interval [0,�). Deduce that the sequence defined
in qn 3.79 is convergent when the first term is positive.
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21 For a continuous function f: [a, b]� [a, b] the existence of a root
for f (x)	x is guaranteed, as we found in qn 7.20. Illustrate how, in
the absence of the condition � f �(x) �� 1,
either (a) multiple roots for f (x)	 x may exist,
or (b) the sequence (a

�
) may not converge.

22 A function f: [a, b]� R is continuous on the closed interval [a, b]
and differentiable on the open interval (a, b).
If, for some c, with a� c� b, f �(c)	 0, and f 
(c) exists and � 0,
prove that there is a neighbourhood of c within which f �(x)� 0
when x� c, and f �(x)� 0 when x� c. Deduce that f has a local
minimum at c.

The result of qn 22 may seem deceptively straightforward. However,
the two conditions, f �(c)	 0 and f 
(c)� 0, do not, by themselves, imply
the continuity of derivatives other than at x	 c.

(23) Let real functions f
�
: R � R be defined by

f
�
(x)	 1� x�

x�

2!
�
x�

3!
� . . .� (�1)�

x�

n!
.

Check that f �
���

	�f
�
.

If n is even and f
�
(x)� 0 for all x, prove that f

���
is monotonic

decreasing and has one and only one root. The existence of at least
one root comes from the Intermediate Value Theorem as in qn
7.19.
Deduce that there is exactly one value of x at which f �

���
(x)	 0,

that f
���

is minimal at this point, and that f
���

(x)� 0 at this point
so that f

���
is positive everywhere.

Now use induction to prove that f
�
is positive when n is even and

has a unique root when n is odd.

24 (i) If the domain of a real function f contains at least the closed
interval [x, y] and x� y, show that the point
(�x� (1� �)y, � f (x)� (1� �) f (y)) lies on the line segment
joining the two points (x, f (x)) and (y, f (y)), provided
0�� � 1.
Draw a diagram.
How would you describe the inequality
f (�x� (1� �)y)�� f (x)� (1� �) f (y) according to your
diagram?
When such an inequality holds throughout the domain of
definition of a function and for all �, with 0�� � 1, the
function is said to be concave upwards (or convex downwards).
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(ii) Suppose that x� y, and let s	 �x� (1� �)y.
Show that the inequality in (i) is equivalent to

f (s)� f (x)

s�x
�
f (y)� f (s)

y� s
.

(iii) If the function f is differentiable on an interval including x
and y, use the mean value theorem to show that the
inequality in (ii) would follow if it was known that f � was
strictly increasing.

(iv) If f 
(x)� 0 on an interval, use qn 15 to deduce that f is
concave upwards on that interval.

Cauchy’s Mean Value Theorem

25 (Cauchy, 1823) Functions f: [a, b]� R and g:[a, b]� R are
continuous on the closed interval [a, b] and differentiable on the
open interval (a, b) and g�(x)� 0 for any x � [a,b]. Let

f (b)� f (a)

g(b)� g(a)
	K.

Prove that the conditions of Rolle’s Theorem hold for the function
F: [a, b]� R defined by

F(x)	 f (b)� f (x)�K(g(b)� g(x)).

Apply Rolle’s Theorem to F to show that, for some c such that
a� c� b,

K	
f �(c)
g�(c)

.

de l’Hôpital’s rule

26 Functions f: [a, b]� R and g: [a, b]� R are continuous on the
closed interval [a, b] and differentiable on the open interval (a, b).
We further assume that f (a)	 g(a)	 0 and g�(x)� 0 for any x in
[a, b].
What does Cauchy’s Mean Value Theorem give in this case?
Now suppose that

lim
����

f �(x)
g�(x)

	 l.
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Prove that, given h� 0,

�
f (a� h)

g(a� h)
� l �	 �

f �(a� �h)
g�(a� �h)

� l �
for some �, with 0��� 1.
Deduce that if 0� k�� implies

�
f �(a� k)

g�(a� k)
� l �� 
,

then 0� h� � implies

�
f (a� h)

g(a� h)
� l ��
,

so that

lim
����

f (x)

g(x)
	 l.

It is easy to see that a result analogous to that of qn 26 can be
obtained using limits from the left if appropriate conditions apply.
When the functions f and g are differentiable at a, either result may
be used.

27 Use de l’Hôpital’s rule, qn 26, to find

(i) lim
���

�(x� 2)��2

�(x� 1)� 1
,

(ii) lim
���

e�� 1

x

(iii) lim
���

sinx

x
, hence lim

���

1� cosx

x�
,

and hence lim
���

x� sinx

x�
.

28 If, in qn 26, we had had

lim
����

f �(x)
g�(x)

	��, instead of lim
����

f �(x)
g�(x)

	 l.

would we have been able to deduce that

lim
����

f (x)

g(x)
	 ��?
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29 A function f: [a, b]� R is continuous on the closed interval [a, b]
and differentiable on the open interval (a, b).
By applying de l’Hôpital’s rule to

f (c� h)� f (c� h)� 2 f (c)

h�
,

prove that if f 
 exists at c � (a, b) then

f �(c)	 lim
���

f (c� h)� f (c� h)� 2f (c)

h�
.

By considering the function f for which f (x)	 x� when x� 0, and
f (x)	�x� when x� 0, show that this limit may exist when f is
not twice differentiable.

It may happen that lim
����

f �(x)/g�(x) does not exist,

when lim
����

f (x)/g(x) does.

30 Let f (x)	x� sin(1/x), when x� 0, f (0)	 0 and g(x)	x.

Show that lim
����

f (x)/g(x)	 0.

Show also that lim
����

f �(x)/g�(x) does not exist.

Check that the conditions for Cauchy’s Mean Value Theorem hold
here for any interval [0,x], with x� 0. Why may the argument in
the proof of de l’Hôpital’s rule not be used to establish the existence
of lim f �(x)/g�(x) when lim f (x)/g(x) is known?

Summary – Rolle’s Theorem and Mean Value Theorem

Rolle’s Theorem
qn 7

If f: [a, b]� R

(i) is continuous on [a, b]
(ii) is differentiable on (a, b), and
(iii) f (a)	 f (b),
then f �(c)	 0 for some c, with a� c� b.

An intermediate value theorem for derivatives
qn 12 If f: [a, b]� R is differentiable on [a, b] and

f �(a)� k� f �(b),
then f �(c)	 k for some c, with a� c� b.
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Mean Value Theorem
qn 7 If f: [a,b]� R is

(i) continuous on [a, b], and
(ii) differentiable on (a, b), then

f (b)� f (a)

b� a
	 f �(c) for some c,

with a� c� b.
Theorem

qn 15
If f: [a,b]� R satisfies the conditions of the
Mean Value Theorem and f �(x)� 0 for all x,
with a�x� b, then f is strictly monotonic
increasing.

Theorem
qn 17

If f: [a,b]� R satisfies the conditions of the
Mean Value Theorem and f �(x)	 0 for all x,
with a�x� b then f is constant.

Theorem
qn 18

If f: [a,b]� R satisfies the conditions of the
Mean Value Theorem and � f � (x) � � 1 for all x,
with a�x� b, then f (x)	 x has exactly one
solution, which is the limit of any sequence (a

�
)

defined by a
���

	 f (a
�
).

Theorem
qn 22

If f: [a,b]� R satisfies the conditions of the
Mean Value Theorem and if, for some c, with
a� c� b, f �(c)	 0 and f 
 (c)� 0, then f has a
local minimum at c.

Cauchy’s Mean Value Theorem
qn 25 If f: [a,b]� R and g: [a, b]� R are functions

such that
(i) both are continuous on [a, b],
(ii) both are differentiable on (a, b), and
(iii) g�(x)� 0 for any x, with a� x� b, then

f (b)� f (a)

b� a
	
f �(c)
g�(c)

for some c, with a� c� b.
de l’Hôpital’s rule

qn 26 If f: [a,b]� R and g: [a, b]� R are functions
such that
(i) both are continuous on [a, b]
(ii) both are differentiable on (a, b),
(iii) f (a)	 g(a)	 0, and

(iv) lim
����

f �(x)
g�(x)

	 l, then lim
����

f (x)

g(x)
	 l.
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The Second and Third Mean Value Theorems

31 Second Mean Value Theorem
A function f: [a, b]� R has a continuous derivative on the closed
interval [a, b] and is twice differentiable on the open interval (a, b).
Let

f (b)� f (a)� (b� a) f �(a)
(b� a)�

	K.

Apply Rolle’s Theorem to the function F: [a,b]� R given by

F(x)	 f (b)� f (x)� (b� x) f �(x)�K(b� x)�

to show that, for some c with a� c� b, K	�
�
f 
(c). Deduce that

f (b)	 f (a)� (b� a) f �(a)�
(b� a)�

2
f 
(c).

32 Rewrite the Second Mean Value Theorem replacing b by a� h.
Then, by a judicious choice of a and h, show that for any twice
differentiable function f: R � R

f (x)	 f (0)� xf �(0)�
x�

2
f 
(c) for some c � (0, x).

33 Third Mean Value Theorem
If a function f: [a, b]� R has a continuous second derivative on the
closed interval [a, b] and is three times differentiable on the open
interval (a, b), then there exists a c, with a� c� b, such that

f (b)	 f (a)� (b� a) f �(a)�
(b� a)�

2!
f 
(a)�

(b� a)�

3!
f -(c).

Indicate how to prove the Third Mean Value Theorem by defining
a constant K and a function F analogous to those in qn 31, and
applying Rolle’s theorem.
Reformulate the theorem, replacing b by a� h.

34 If f (x)	 a
�
� a

�
x� a

�
x� � . . .� a

�
x�, prove that

a
�
	 f (0), a

�
	 f �(0), a

�
	�

�
f 
(0), . . ., a

�
	
f 
��(0)

n!
.

We now extend the Second and Third Mean Value Theorems to an
nth Mean Value Theorem to compare functions, which may be
differentiated any number of times, with polynomials.
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Taylor’s Theorem

Taylor’s Theorem or nth Mean Value Theorem

35 The function f: [a, b]� R has a continuous (n� 1)th derivative on
the closed interval [a, b] and is differentiable n times on the open
interval (a, b).
Let

f (b)� f (a)� (b� a) f �(a)� . . .�
(b� a)���

(n� 1)!
f 
����(a)

(b� a)�
	K.

Apply Rolle’s Theorem to the function F: [a,b]� R given by

F(x)	 f (b)� f (x)� (b� x) f �(x)�
(b� x)�

2!
f 
(x)�

. . .�
(b� x)���

(n� 1)!
f 
����(x)�K(b� x)�,

to show that, for some c with a� c� b, K	 f 
��(c)/n!.
So

f (b)	 f (a)� (b� a) f �(a)�
(b� a)�

2!
f 
(a)�

. . .�
(b� a)���

(n� 1)!
f 
����(a)�

(b� a)�

n!
f 
��(c).

36 Rewrite the conclusion of Taylor’s Theorem substituting a� h for
b.

Maclaurin’s Theorem

37 By putting a	 0 and h	 x in qn 36 show that, for any function
f: [0, x]� R which is differentiable n times,

f (x)	 f (0)�xf �(0)�
x�

2
f 
(0)� . . .�

x���

(n� 1)!
f 
����(0)�

x�

n!
f 
��(�x),

for some � � (0, 1).

38 Use Maclaurin’s Theorem to say what you can about R
�
(x) where

exp(x)	 1� x�
x�

2!
� . . .�

x���

(n� 1)!
�R

�
(x),

assuming that exp(0)	 1 and exp�(x)	 exp(x).
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Prove that, for any given x, (R
�
(x))� 0 as n��.

Deduce that

exp(x)	
�
�
���

x�

n!
.

Use computer graphics to observe the connection between the
graphs of y	 1, y	 1�x, y	 1� x��

�
x�, . . ., and y	 exp(x).

39 Use Maclaurin’s Theorem to say what you can about R
��
(x) where

sinx	x�
x�

3!
� . . .� (�1)���

x����

(2n� 1)!
�R

��
(x).

Prove that, for any given x, (R
��
(x))� 0 as n� �.

Deduce that

sinx	
�
�
���

(�1)���
x����

(2n� 1)!
.

Observe the connection between the graphs you drew for qn 16 and
this result.

40 Use Maclaurin’s Theorem to say what you can about R
����

(x).

cosx	 1�
x�

2!
� . . .� (�1)�

x��

(2n)!
�R

����
(x).

Prove that, for any given x, (R
����

(x))� 0 as n��.
Deduce that

cosx	
�
�
���

(�1)�
x��

(2n)!
.

Observe the connection between the graphs you drew for qn 16 and
this result.

41 If f (x)	 log(1�x), use qn 1.8(i) to show that

f 
��(x)	 (�1)���
(n� 1)!

(1�x)�
.

Use Maclaurin’s Theorem to say what you can about R
�
(x) where

log(1� x)	x�
x�

2
�
x�

3
� . . .� (�1)�

x���

n� 1
�R

�
(x).
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Prove that (R
�
(x))� 0 as n��

(i) when 0� x� 1;
(ii) when x	 1;
(iii) when ��

�
� x� 0.

Deduce that

log(1� x)	
�
�
���

(�1)���
x�

n
, when ��

�
�x� 1.

In fact, the series expansion is valid for �1�x� 1 as we will
show in qns 46 and 11.38.

42 Use d’Alembert’s ratio test (qn 5.69 or 5.95) to prove that
x��

�
x� ��

�
x� � . . . is not convergent when x� 1? Deduce that, in

this case, the sequence (R
�
(x)) in qn 41 is not a null sequence.

In qn 36,

f (a)� hf �(a)�
h�

2!
f 
(a)� . . .�

h���

(n� 1)!
f 
����(a)

is called the polynomial expansion of f (a� h) and

R
�
(h)	

h�

n!
f 
��(a� �h),

is called the Lagrange form of the remainder.
In qn 37,

f (0)� xf �(0)�
x�

2!
f 
(0)� . . .�

x���

(n� 1)!
f 
����(0)

is called the polynomial expansion of f (x) and

R
�
(x)	

x�

n!
f 
��(�x),

is called the Lagrange form of the remainder.

(i) If we regard the polynomial expansions as the partial sums of a
power series (known as the Taylor series in the case of qn 36 and
as the Maclaurin series in the case of qn 37) the power series may
be convergent or not. In any case Taylor’s Theorem is still a valid
theorem and the remainder term measures how good an
approximation to the function is given by the polynomial. There is
an example of a non-convergent Taylor series in qn 42.
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(ii) If the Taylor series is convergent and the sequence of remainders
tends to 0 as n tends to infinity, then the Taylor series converges to
the function as we have seen in questions 38—41. In fact, when the
remainders tend to 0, the Taylor series is necessarily convergent.

(iii) Somewhat surprisingly, a Taylor series may be convergent without
the remainders tending to zero. In this case, the Taylor series
cannot converge to the function. There is an example of this in qn
44.

43 Write down the Maclaurin series for the function f (x)	�(1�x).
Does it coincide with the binomial expansion of qn 5.98 for a	�

�
?

If the Maclaurin series is f (x)	 1� a
�
x� a

�
x� � a

�
x�� . . ., check

that � a
�
is an alternating series and that a

���
/a

�
	 (�

�
� n)/(n� 1),

so that the absolute values of the terms are monotonic decreasing.
Now check that � a

�
�	�

�
· �


· �
�
· �
�
· . . . · ����

����
· �
��
, so that � a

�
� � 1/2n

and ( � a
�
� ) is a null sequence. Use the alternating series test to

prove that the Maclaurin series for f (1) is convergent. How many
terms of this series are needed before �2 has been found correct to
one place of decimals, that is, until the error is less than 0.05?

44 (Cauchy, 1823) The function f: R � R defined by

f (x)	�
e�����

0

when x� 0,

when x	 0,

has the curious property that f 
��(0)	 0 for every value of n.
[A proof is given in Scott and Tims, p. 335 and another in
Bressoud pages 90 and 91.]
What is the Maclaurin series for this function?
Is there a non-zero value of x for which the remainders can form a
null sequence?
Construct an infinity of different functions each of which has the
same Maclaurin series.

A Taylor series is a valid description of the function from which it
originates if and only if its sequence of remainders is null. It is so
important to be able to prove that the sequence of remainders of a
Taylor series is null that a number of different forms of the remainder
have been devised since the Lagrange form of the remainder, which we
have been using, is not always sufficient to decide the matter, as we
found in qn 41.

(45) With the notation and conditions of qn 35 let

f (b)� f (a)� (b� a) f �(a)� . . .�
(b� a)���

(n� 1)!
f 
����(a)

b� a
	K.
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Apply Rolle’s Theorem to the function F: [a,b]� R given by

F(x)	 f (b)� f (x)� (b� x) f �(x)�
(b� x)�

2!
f 
(x)�

. . .�
(b�x)���

(n� 1)!
f 
����(x)�K(b� x)

to show that, for some c with a� c� b,

K	
(b� c)���

(n� 1)!
f 
��(c).

So f (b)	 f (a)� (b� a) f �(a)�
(b� a)�

2!
f 
(a)� . . .

�
(b� a)���

(n� 1)!
f 
����(a)�

(b� c)���(b� a)

(n� 1)!
f 
��(c).

This last term is called Cauchy’s form of the remainder.

(46) Use Cauchy’s form of the remainder to prove that the Taylor series
for log(1�x) converges to the function when �1� x� 1.

Summary – Taylor’s Theorem

Taylor’s Theorem with Lagrange’s form of the remainder, or nth
Mean Value Theorem

qn 35 If f: [a,b]� R

(i) has a continuous (n� 1)th derivative on
[a, b],
(ii) is differentiable n times on (a, b), then

f (b)	 f (a)� (b� a) f �(a)�
(b� a)�

2!
f 
(a)�

. . .�
(b� a)���

(n� 1)!
f 
����(a)�

(b� a)�

n!
f 
��(c)

for some c, with a� c� b.

Taylor’s Theorem with Cauchy’s form of the remainder

qn 45 If f: [a,b]� R

(i) has a continuous (n� 1)th derivative on
[a, b],
(ii) is differentiable n times on (a, b), then
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f (b)	 f (a)� (b� a) f �(a)�
(b� a)�

2!
f 
(a)�

. . .�
(b� a)���

(n� 1)!
f 
����(a)�

(b� c)���(b� a)

(n� 1)!
f 
��(c).

for some c, with a� c� b.

Maclaurin’s Theorem

qn 37 If f: [0,x]� R is differentiable n times, then

f (x)	 f (0)� xf �(0)�
x�

2!
f 
(0)� . . .�

x���

(n� 1)!
f 
����(0)�

x�

n!
f 
��(�x),

for some �, with 0��� 1.
Definition The power series

f (a� h)	 f (a)� hf �(a)�
h�

2!
f 
(a)� . . .�

h�

n!
f 
��(a)� . . .

is called the Taylor series of f at a.
Definition The power series

f (x)	 f (0)� xf �(0)�
x�

2!
f 
(0)� . . .�

x�

n!
f 
��(0)� . . .

is called the Maclaurin series for f.
Theorem

qn 38
The Taylor series expansion of a function at a
converges to f (a� h) if and only if the difference
between the nth partial sum of the series and
f (a� h) is a null sequence as n��; or, in other
words, if the remainders form a null sequence.

Historical note

Early in the seventeenth century Cavalieri affirmed that there was
always a tangent parallel to a chord, and this must count as an
embryonic form of the Mean Value Theorem.

In 1691, Michel Rolle proved that between two adjacent roots of a
polynomial f (x) there was a root of f �(x). His definition of f �(x) was
algebraic (so that, if f (x)	 x�, then f �(x)	 nx���) and his proof was like
an application of the Intermediate Value Theorem in that he claimed
that f � had a different sign at adjacent roots of f and therefore must be
zero somewhere between the roots.
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Lagrange was the first mathematician to bring inequalities into
theorems and proofs about the foundations of calculus. In 1797 he
argued (wrongly as it turned out) that every function had a power series
expansion. He obtained f (a� h)	 f (a)� hf �(a)� hr(h) where r(h) tends
to 0 as h tends to 0, from his power series for f and deduced firstly that
functions with positive derivatives were increasing. He then deduced
that ( f (a� h)� f (a))/h lay between the greatest and least values of f �(x)
on the interval [a, a� h]. Presuming the Intermediate Value Theorem
gave him the Mean Value Theorem. He applied the same argument to
obtain the Second and Third Mean Value Theorems. In 1823, Cauchy
worked from an 
—� description of derivative on an interval. He divided
his interval [a, b] into lengths shorter than � and obtained a chain of
inequalities of the form

f �(x
�
)� 
�

f (x
�
)� f (x

���
)

x
�
�x

���

� f �(x
�
)� 
.

The sum of the numerators is f (b)� f (a) and the sum of the
denominators is b� a, and as this forms a sort of mean of the
quotients, it lies between the greatest and least of the derivatives. Now
Cauchy claimed the Intermediate Value Theorem (assuming continuous
derivatives) and obtained the Mean Value Theorem. Rolle’s theorem
and the Mean Value Theorem, as we know them today, depend on the
results of Weierstrass which distinguish precisely between properties of
continuous functions and properties of differentiable functions and
therefore expose exactly what is assured according to the number of
times a function may be differentiable. In a letter which Schwarz wrote
to Cantor in 1870 (both Schwarz and Cantor had been students of
Weierstrass) Schwarz proved that f �(x)	 0� f (x) is constant, and said
that this was the foundation of the differential and integral calculus. In
1878, U. Dini published the first proof of Rolle’s Theorem with
Weierstrassian rigour.

De l’Hôpital’s rule first appeared in his Analyse des infiniments
petits (1696) where de l’Hôpital singularly failed to give the credit for
this result where it was due, namely to his teacher, Johann Bernoulli. In
1823, working with functions with continuous derivatives, Cauchy
proved his extension of the Mean Value Theorem and deduced de
l’Hôpital’s rule from it.

The expansion of binomial, trigonometric and exponential
expressions in the form of power series goes back to Newton and James
Gregory (1669). Brook Taylor constructed the series which bears his
name in 1712. His method was based on the Gregory—Newton
construction of a polynomial from finite differences which appeared in
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Newton’s Principia (1687), to which Taylor applied a limiting process.
Maclaurin (1742) obtained his series by repeated differentiation of a
presumed infinite series expansion, putting x	 0 at each stage
recognising it to be a special case of Taylor’s. Lagrange (1797) having
‘proved’ that every function has a Taylor series expansion established
the First, Second and Third Mean Value Theorems as we have
described above. In each case he obtained bounds on the remainder
(really on K, in qns 13, 31 and 33) after one, two and three terms of the
Taylor series (respectively) and claimed, correctly, that his method
extended to n terms giving the Lagrange form of the remainder as we
know it today.

In 1823 Cauchy claimed that all the derivatives of exp(�1/x�) are
zero at x	 0 so that this function does not have a Taylor series at this
point. This undermined Lagrange’s programme for a theory of analytic
functions based entirely on Taylor series. Cauchy derived his form of
the Taylor series remainder from the remainder in integral form, which
he also established in 1823.

In Weierstrass’ lectures in 1861 he claimed the Fundamental
Theorem of Analysis to be that, when f 
��(x

�
)	 0 for

i	 1, 2, 3, . . ., n� 1,

f (x)� f (x
�
)	

(x�x
�
)�

n!
· f 
��(x

�
� �(x�x

�
)),

for some �, 0�� � 1,

a form of Taylor’s Theorem with Lagrange remainder which had been
obtained by Cauchy in 1829.
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a b

Figure 9.1

Answers

1 Yes. Either a local maximum or a local minimum for the function.

2 A differentiable function is continuous and a continuous function on a
closed interval is bounded and attains its bounds, from qns 7.31 and
7.34.
If f (a)	 f (b) is not a maximum then the maximum occurs on the open
interval. If f (a)	 f (b) is not a minimum then the minimum occurs on
the open interval. If f (a)	 f (b) is both a maximum and a minimum,
then the function is constant. Yes.

3 Yes, by qn 8.30.

4 If f (a)	 f (b)	M�m, there is a c with f (c)	m.
If f (a)	 f (b)	m�M, then there is a c with f (c)	M.
If f (a)	 f (b)	M	m, then f (x)	M	m for all x, and so f �(x)	 0
from qn 8.6.

5 See figure 9.1.

6 Differentiable �Continuous.
At a local maximum or minimum f �(x)	 0.

7 (i) � f is bounded and attains its bounds.
(iii) �when f (a) is not a maximum, there is a maximum f (c) with

a� c� b; when f (a) is not a minimum there is a minimum f (c)
with a� c� b; and when f (a) is a maximum and a minimum f (c)
is a maximum and a minimum.

(ii) � f �(c)	 0.

8 See figure 9.2.

9 Apply Rolle’s Theorem to the function
x� a

�
x� a

�
x�/2� a

�
x�/3� . . .� a

�
x���/(n� 1) on the interval [0, 1].

10 Apply Rolle’s Theorem to [a, b] and [b, c], to find f �(x)	 0 with
a�x� b and f �(y)	 0 with b� y� c. Then apply Rolle’s Theorem to
the function f � on the interval [x, y].
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Property (i)
fails

a b a b

Property (ii)
fails

a b a b

Property (iii)
fails

a b a b

Figure 9.2

If an n-times differentiable function has n� 1 zeros, then between the
extreme roots there is a point c at which f 
��(c)	 0.

11 (i) Continuous and differentiable by qns 8.15 and 8.17 since the
denominator is never 0. f (0)	 f (2)	�



. Rolle’s Theorem fails.

Completeness is needed for the Maximum—minimum theorem.
(ii) Polynomials continuous and differentiable. g(1)	 g(4)	 0. g is

bounded below but does not attain its lower bound. Domain not
an interval, i.e. not complete.

12 (i) By qn 6.23. (ii) By qns 7.31, 7.32 and 7.34. (iii) By qns 8.10 and
8.11.

(iv) By qn 8.6 since two derivatives are unequal.
Apply Rolle’s Theorem to g on [a, b] then, for some c in (a, b),
g�(c)	 0. The function f in qn 8.22 is differentiable at every point.
For this function, f �(x)	 2x · sin(1/x)� cos(1/x), when x� 0, and
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f �(0)	 0. The derived function f � is discontinuous at 0. Examine
the graph of f � on a graphics calculator to see how the
intermediate value property for derivatives holds on any interval
[0, a]. Near to zero, the function oscillates infinitely many times
between positive and negative values.

13 (i) If the point (x, y) lies on the chord joining (a, f (a)) to (b, f (b)) then

y� f (a)

x� a
	
f (b)� f (a)

b� a
,

so

y	 f (a)�
f (b)� f (a)

b� a
(x� a)

and

D(x)	 f (x)� f (a)�
f (b)� f (a)

b� a
(x� a).

D satisfies the conditions for Rolle’s Theorem on [a, b].

D�(c)	 0� f �(c)	
f (b)� f (a)

b� a
.

(ii) F(a)	 0 from the definition of K. F(b)	 0, trivially.
Differentiability follows from qn 8.10. F�(c)	 0� f �(c)	K.
For some c in (a, b),

f �(c)	K	
f (b)� f (a)

b� a
.

14 If b	 a� h, any c in (a, b) has the form a� �h.

15 Let a�x� y� b; then, for some c in the interval (x, y),

f (y)� f (x)

y�x
	 f �(c)� 0.

So x� y� f (x)� f (y).

16 f �
�
(x)	 1� cosx� 0 on (0, 2�), so f

�
is strictly increasing by qn 15.

Since f
�
(0)	 0, f

�
(x)� 0 on (0, 2�).

f �
�
(x)	 f

�
(x)� 0 on (0, 2�), so f

�
is strictly increasing.

Since f
�
(0)	 0, f

�
(x)� 0 on (0, 2�). f �

�
(x)	 f

�
(x) and f �



(x)	 f

�
(x).

The argument may be repeated.

17 Let a�x� b; then

f (x)� f (a)

x� a
	 f �(c)	 0 for some c in (a,x).
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So f (x)	 f (a).
For non-constant f, the domain must be disconnected.

18 f (y)� f (x)

y�x
	 f �(c).

� f �(c) � � L gives the result.

� a
���

� a
�
�	 � f (a

�
)� f (a

�
) �� L · � a

�
� a

�
�� L · � b� a � .

� a
���

� a
�
� 	 � f (a

���
)� f (a

�
) � � L · � a

���
� a

�
�

� L� · � a
�
� a

�
� � L� · � b� a � .

Further steps by induction. Now 0� L � 1, so (L�) is a null sequence.
So for sufficiently large n, � a

���
� a

���
�� 
, and (a

�
) is a Cauchy sequence

and so, by qn 4.57, is convergent.
A and B lie in [a, b] by qn 3.78, since the interval is closed.
(a

�
)�A implies (a

���
)�A, so ( f (a

�
))�A. But f is continuous at A, so

f (A)	A and similarly f (B)	B.

� b
���

� a
���

� 	 � f (b
�
)� f (a

�
) �� L · � b

�
� a

�
�� . . .� L� · � b

�
� a

�
� .

So (b
�
� a

�
) is a null sequence and by qn 3.54(v) (a

�
) and (b

�
) have the same

limit.

19 Let f (x)	 cosx. Then if 0�x� �
�
�, 0� cosx� 1.

f �(x)	�sinx. So f is a contraction mapping on [0, 1] and, by qn 18,
f (x)	x has a unique solution. Obviously no solution on [1, �

�
�].

20 If 1�x� 2, then 3�x� 2� 4, so �3� �(x� 2)� 2 which implies
1� �(x� 2)� 2. Thus f has domain and co-domain [1, 2].
f �(x)	 1/2�(x� 2). 1� x� 2� �



� f �(x)� 1/2�3� � f �(x) �� 1. So f is a

contraction mapping on [1, 2]. Therefore if a
�
� [1, 2], the sequence defined

by a
���

	 f (a
�
) is convergent.

21 See figure 9.3.

22 Let f 
(c)	 l� 0. Then, for some �,

0� �x� c �� �� �
f �(x)� f �(c)

x� c
� l �� �

�
l� �

�
l�

f �(x)

x� c
� �

�
l,

since f �(c)	 0.
Thus c� �� x� c� f �(x)� 0, and c�x� c� �� f �(x)� 0.
Now, by the Mean Value Theorem, for any x satisfying c� ��x� c,

f (x)� f (c)

x� c
	 f �(d)

for some d � (x, c), so f �(d)� 0 and f (x)� f (c).
Likewise for c�x� c� �, f (x)� f (c), so f has local minimum at c.
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(a) (b)

a a  a2n- 1  2n b

Figure 9.3

23 f
���

is strictly monotonic decreasing by qn 15, and so has at most one
root. n� 1 odd� f

���
has at least one root from qn 7.19 since x���

changes sign. f �
���

(x)	 0� f
���

(x)	 0 and this occurs once, at x	 a� 0.
For any value of x, f 


���
(x)	�f �

���
(x)	 f

�
(x)� 0.

So f
���

is minimal at x	 a by qn 22.

f
���

(a)	 f
���

(a)�
a���

(n� 2)!
	

a���

(n� 2)!
� 0,

since n is even and a� 0.
At its only minimum value f

���
is positive, so the function is positive

everywhere. Thus f
�
positive implies f

���
positive.

f
�
(x)	 1�x� �

�
x�	 �

�
[1� (1�x)�]� �

�
. So by induction f

�
is positive

when n is even. We have also shown that, if this is the case, then f
���

has a
unique root.

24 (i) Point	 (y, f (y))� �(x� y, f (x)� f (y)). Inequality indicates that the graph
of the function lies below the line segment joining the two points. (iii) If f is
differentiable, then for some c and d, the inequality is equivalent to
f �(c)� f �(d), where x� c� s� d� y, applying the Mean Value Theorem
twice. (iv) By qn 15, f 
(x)� 0� f �(x) is strictly monotonic increasing. This
implies (iii) which implies (ii) which implies the function is concave.

25 Note that g(b)� g(a) because, if not, Rolle’s Theorem applied to g on [a, b]
would contradict g�(x)� 0.

26 For some c, a� c� b,

f (b)

g(b)
	
f �(c)

g�(c)
.

First equation follows directly from this.
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For the conditions we have established 0� k� h. So if h��, then
certainly k��.
What this establishes is a convenient rule for finding difficult limits. If
f (a)	 g(a)	 0, then our ordinary procedures for finding lim

���
f (x)/g(x)

may not be used, but we can try to find lim
���

f �(x)/g�(x), and, if we are
successful, that is the answer we are looking for.

27 (i) 1/�2. (ii) 1. (iii) 1, 1/2, 1/6. The first result in (iii) is of great importance
and is variously justified in different treatments. Some make it plausible
from geometric considerations and then use it to find the derivative of sine.
In such a case, de l’Hôpital’s rule may not be used, for that would make a
circular argument. Some treatments define sine by a power series, and then
de l’Hôpital’s rule is needed for a sound argument. We will define sine
analytically (but with geometric motivation) in chapter 11, and that
provides a proper basis for the argument here.

28 The basis of the question is the application of Cauchy’s Mean Value
Theorem in case f (a)	 g(a)	 0. In this case, for b� a, we have

f (b)

g(b)
	
f �(c)

g�(c)
for some c, with a� c� b.

If, given B, there exists a � such that

a� x� a� ��
f �(x)

g�(x)
�B,

then a� y� a� ��
f (y)

g(y)
	
f �(x)

g�(x)
�B

for some x, with a� x� y� a� �. The result is proved.

29 After applying de l’Hôpital’s rule, use qn 8.23.
f �(x)	 2x for x� 0, and f �(x)	�2x for x� 0. This f � is not differentiable
at 0. But the limit exists and equals 0.

30 For the first result see qn 8.21.
f �(x)/g�(x)	 2x sin(1/x)� cos(1/x), of which the first component tends to 0
as in qn 8.21, but the second component oscillates near 0 like the function
of qn 8.20.
Cauchy’s Mean Value Theorem says that, if a� b, then there exists a c
with a� c� b, such that . . .. But if b� a there is nothing to indicate that
the consequent cs for each b exhaust the possibilities.

31 F(a)	 0 from the definition of K. F(b)	 0, trivially. F is differentiable from
qns 8.10 and 8.13.

32 f (a� h)	 f (a)� hf �(a)��
�
h�f 
(a� �h), for some �, 0��� 1. Put a	 0

and h	x.
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33 Let

f (b)� f (a)� (b� a) f �(a)��
�
(b� a)�f 
(a)

(b� a)�
	K,

and let F(x)	 f (b)� f (x)� (b� x) f �(x)��
�
(b� x)�f 
(x)�K(b�x)�. The

application of Rolle’s Theorem to F gives K	 f -(c)/6 for some c, with
a� c� b.

f (a� h)	 f (a)� hf �(a)� (h�/2!) f 
(a)� (h�/3!) f -(a� �h).

36 For some �, 0��� 1,

f (a� h)	 f (a)� hf �(a)�
h�

2!
f 
(a)� . . .�

h���

(n� 1)!
f 
����(a)�

h�

n!
f 
��(a� �h).

38 R
�
(x)	

x�

n!
exp(�x), for some �, 0��� 1.

The function exp is monotonic (see chapter 11) so if
k	max(1, exp(x)), �R

�
(x) �� � x�/n! � · k. Now ( �x�/n! � ) is a null sequence by

qn 3.74(ii). So (R
�
(x))� 0 as n� � by qn 3.34 (squeeze rule). The nth

partial sum of the power series	 exp(x)�R
�
(x)� exp(x) as n� �.

39 If f (x)	 sinx, f �(x)	 cosx	 sin(x��
�
�), so f 
��(x)	 sin(x��

�
n�).

R
��
(x)	 (x��/2n!) · sin(�x� n�). So �R

��
(x) � � �x��/2n! � . This shows that

(R
��
(x))� 0 as n� �. As in qn 38, this enables us to prove that the series

converges to the function for each value of x.

40 If f (x)	 cosx, f �(x)	�sinx	 cos(x��
�
�), so f 
��	 cos(x��

�
n�). The

argument proceeds as in qn 38.

41 R
�
(x)	

x� · (�1)���(n� 1)!

n!(1� �x)�
	 (�1)���

x�

n(1� �x)�
.

(i) For 0� x� 1, �R
�
(x) �� �x�/n � and so (R

�
(x)) is a null sequence, and

the series converges to the function, as in qn 38.
(ii) �R

�
(1) �	 1/n(1� �)� � 1/n, and again (R

�
(x)) is a null sequence.

(iii) For ��
�
�x� 0, � x �� �

�
� � 1� �x � , so �x/(1� �x) �� 1 and

therefore �R
�
(x) � � 1/n, so that (R

�
(x)) is a null sequence.

42 From qn 5.95 (or 5.69) the radius of convergence is 1. Now consider a
particular x� 1.
The nth partial sum of series	 log(1�x)�R

�
(x). If (R

�
(x)) were a null

sequence, the sequence of nth partial sums would converge.

43 The two series coincide. Radius of convergence 	 1.
For n� 2, � the remainder after the nth term � 	 a

���
/(1� �)������ a

���
,

a


	 0.06 . . ., a

�
	 0.039 . . .. So four terms needed.

249Answers



44 The Maclaurin series is 0� 0� 0� . . ..
The remainder always equals the whole value of the function, so
remainders are constant and not null.
For each choice of the constant k, the function x� sin x� k · f (x) has the
same Maclaurin series as sin x.

45 As in qn 35, F(a)	F(b)	 0, and F continuous on [a, b] and differentiable
on (a, b),

F�(c)	 0��
(b� c)���

(n� 1)!
f 
��(c)�K	 0.

46 Using the work of qn 41, Cauchy’s form of the remainder

R
�
(x)	

(x� �x)���x

(n� 1)!
(�1)���

(n� 1!)

(1� �x)�

	 (�1)���x��
1� �

1� �x�
���

·
1

1� �x
.

Now �1�x�����x� 0� 1� �� 1� �x� (1� �)/(1� �x)� 1.
So �1�x� �R

�
(x) �� � x�/(1� �x) � � �x�/(1� � x � ) � . But, if �x �� 1, this

last expression gives a null sequence, so (R
�
(x)) is a null sequence.
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Circumscribed
polygon

Inscribed
polygon

Figure 10.1

10

Integration
The Fundamental Theorem of Calculus

Preliminary reading: Gardiner ch. III.3, Toeplitz ch. 2.
Concurrent reading: Bryant ch. 5, Courant and John ch. 2.
Further reading: Spivak chs 13 and 14.

Areas with curved boundaries

The idea of integration comes from the need to measure areas. The
measurement of area is the measurement of the quantity of units of
surface needed for an exact covering. From the use of a unit square
comes the area of a rectangle as length times breadth. Since a triangle
can be dissected and reassembled to form a rectangle, the area of a
triangle can be calculated, and since any area bounded by a polygon
can be dissected into triangles, the area of any polygon can also be
calculated. However, when the boundary is curved, the measurement of
area is more difficult. The areas of inscribed and circumscribed
polygons provide lower and upper bounds on the area (see figure 10.1),
and if the construction of inscribed and circumscribed polygons can be
done progressively in such a way that the areas of inscribed polygons
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Figure 10.2

and the areas of circumscribed polygons tend to the same limit, then
that common limit will be the area to be determined, provided the
boundary is continuous.

1 (Fermat, 1636) We start by investigating the shaded area, A,
bounded by the parabola y	x�, the x-axis and the line x	 a,
taking a to be positive. In figure 10.2 O	 (0, 0), B	 (�

�
a, 0),

C	 (a, 0), D	 (0, �


a�), E	 (�

�
a, �



a�), F	 (a, �



a�), G	 (�

�
a, a�) and

H	 (a, a�).
Justify the inequalities

area BEFC�A� area ODEB� area BGHC,

and deduce that

�
�
a��A� �

�
a� ��

�
a�	 �

�
a�.

By inscribing rectangles with bases (�
�
a, 0)(�

�
a, 0) and (�

�
a, 0)(a, 0), in A,

show that 5a�/27�A, and, by covering A with rectangles with
bases (0, 0)(�

�
a, 0), (�

�
a, 0)(�

�
a, 0) and (�

�
a, 0)(a, 0) show that A� 14a�/27.

In the first case A was shown to lie within an interval of size �
�
a�,

and in the second case A was shown to lie within an interval of size
�
�
a�, so the gap was narrowed.

Now, for a positive integer n, inscribe rectangles with bases
(a/n, 0)(2a/n, 0), (2a/n, 0)(3a/n, 0), . . ., ((n� 1)a/n, 0)(a, 0), in A, to show
that

a�

n�
(1�� 2� � . . .� (n� 1)�)�A.

Use qn 1.1 to show that �
�
a�(1� 1/n)(1� 1/2n)�A.
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Now, cover A with rectangles with bases (0, 0)(a/n, 0),
(a/n, 0)(2a/n, 0), . . ., ((n� 1)a/n, 0)(a, 0), to show that

A�
a�

n�
(1�� 2� � . . .� n�)	�

�
a�(1� 1/n)(1� 1/2n).

Deduce that A	 �
�
a� is the only value which satisfies the

inequalities

�
�
a�(1� 1/n)(1� 1/2n)�A� �

�
a�(1� 1/n)(1� 1/2n)

for all values of n.

2 Let B be the area bounded by the curve y	x�, the x-axis and the
line x	 a, where we take a to be positive. Using the method of qn
1, and appealing to qn 1.3(iii), prove that, for all values of the
positive integer n,

�


a
(1� 1/n)��B� �



a
(1� 1/n)�.

Deduce that B	 �


a
 is the only value which satisfies all of these

inequalities.

Using this method to find the area bounded by the curve y	x�,
the x-axis and the line x	 a depends upon knowing a formula for the
sum � ���

���
r�, which we may not have to hand. Faced with this problem,

Fermat devised a new approach, which enabled him to find areas under
curves of the form y	 1/x�, for rational k� 1 and curves of the form
y	x� for rational k.

3 (Fermat, 1658) Let C be the area between the curve y	 1/x�, the
x-axis and the line x	 1. Let r� 1. By inscribing rectangles in C,
parallel to the y-axis, with bases (1, 0)(r, 0),
(r, 0)(r�, 0), . . ., (r���, 0)(r�, 0), . . ., prove that 1/r�C, and by
circumscribing rectangles with the same bases around C, prove that
C� r. Since 1/r�C� r for every real number r� 1, deduce that
C	 1.

4 Let C be the area between the curve y	x�, the x-axis and the line
x	 a, where k is a positive integer and a is positive. Let 0� r� 1.
By inscribing rectangles in C with bases (a, 0)(ar, 0),
(ar, 0)(ar�, 0), . . ., (ar���, 0)(ar�, 0), . . ., prove that

a���
r�

1� r� r�� . . .� r�
�C,

and by circumscribing rectangles with the same bases around C,
prove that
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C� a���
1

1� r� r�� . . .� r�
.

Find the limit of each of these bounds as r� 1. Since these two
inequalities hold for every r with 0� r� 1, the shared limit,
a���/(k� 1), is the only possible value for C.

5 Use the method of qns 3 and 4 to find the area bounded by the
curve y	 1/x�, the x-axis and the line x	 1, where k is a positive
integer greater than 1.

6 (Gregory of St Vincent, 1647) Let D be the area bounded by the
curve y	 1/x, the lines x	 1, and x	 a and the x-axis, where
a� 1. Use the method of qn 3 to show that

n( ��a� 1)
��a

�D� n( ��a� 1).

From qn 4.41 we know that (n( ��a� 1)) has a limit as n��. Use
qns 3.57(d), 3.67, the quotient rule, and 3.78, the closed interval
property, to deduce that that limit is D.

Monotonic functions

7 (Newton, 1687) Let f: [a, b]�R be a function which is positive,
monotonic increasing and continuous.
Let c	�

�
(a� b).

(i) Explain why

(b� a) f (a)� (c� a) f (a)� (b� c) f (c)
(b� a) f (a)� (c� a) f (c)� (b� c) f (b)
(b� a) f (a)� (b� a) f (b).

(ii) Divide the interval [a, b] into n equal parts each of length
(b� a)/n. Let I

�
	 the sum of the areas of the n rectangles

inscribed under the graph of y	 f (x), with bases
(a, 0)(a� l/n, 0), (a� l/n, 0)(a� 2l/n, 0), . . .,
(a� (n� l)l/n, 0)(b, 0), where l	 b� a; and let C

�
	 the sum

of the areas of n rectangles just covering the graph of y	 f (x),
with bases (a, 0)(a� l/n, 0), (a� l/n, 0)(a� 2l/n, 0), . . .,
(a� (n� 1)l/n, 0)(b, 0). Use the argument at the beginning of
this question to show that I

�
� I

��
�C

��
�C

�
.

(iii) Prove that (I
��
) is a monotonic increasing sequence.

Deduce that this sequence is convergent to a limit I, say.
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(iv) Prove that (C
��
) is a monotonic decreasing sequence.

Deduce that this sequence is convergent to a limit C, say.
(v) Prove that C

�
� I

�
	 ((b� a)/n)( f (b)� f (a)), and deduce that

(C
�
� I

�
) is a null sequence.

(vi) Use qn 3.54(v), the difference rule, to show that C	 I, so that
we have found a measure of the area bounded by the graph of
y	 f (x), the lines x	 a, x	 b and the x-axis.

8 In qn 7, had f been monotonic decreasing, in what way would the
argument have been affected?

9 (Gregory of St Vincent, after Toeplitz, 1963) A famous example of a
continuous function which is monotonic decreasing is the function
given by f (x)	 1/x for positive values of x. From qn 8, the area
bounded by this graph, the x-axis and the lines x	 a and x	 b,
for positive a and b, is well defined, being the limit of the sum of
the areas of inscribed rectangles.

(i) Show that if n rectangles with bases of equal width are
inscribed under this graph on the interval [1, a], and that if n
rectangles with bases of equal width are inscribed under this
graph on the interval [b, ba], then the area of the two sets of
n rectangles are equal.

(ii) Deduce from qn 8 that the area under the graph on [1, a] is
equal to the area under the graph on [b, ba].

(iii) Deduce further that the area under the graph on [1, ab] is
equal to the sum of the areas under the graph on [1, a] and
[1, b], the essential property of the logarithm function.

(iv) Interpret this result in terms of the limits of qn 6.

The definite integral

It is now appropriate to recognise that the argument in qn 7 did
not require the function f to have positive values except for the purpose
of using the word ‘area’. The inequalities of qn 7(i) are independent of
any notion of area.

In qn 7(ii) we can define

I
�
	

���
�
���

l

n
f�a�

(i� 1)l

n � and C
�
	

���
�
���

l

n
f�a�

il

n� ,
without reference to area, and we obtain convergent sequences as before
in qn 7(iii) and 7(iv), with equal limits, as in qn 7(vi). The common limit
is called the integral of the function f on [a,b], and is denoted by � 


�
f.

The symbol � is a large squashed S (for sum).
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10 Give examples of monotonic functions f and g which are both
continuous on [a, b], for which the equation

�



�

( f� g)	 �



�

f� �



�

g

would fail if the integral were always to denote the positive value of
the area between the graph and the x-axis.

A further distinction between the notion of integral and the
measurement of area under a graph seems natural when we recognise
that the argument of qn 7, as modified before qn 10, does not depend
on the continuity of the function f. An area must have a boundary, and
in order to give boundaries to the areas under discussion in qn 7, the
function f was taken to be continuous. The graph of a discontinuous
function may have gaps in it and so does not bound an area. But the
limiting arguments of qn 7 as modified before qn 10 hold for a
monotonic function f even if f is discontinuous at many points of the
interval [a, b]. So such a function can have a well-defined integral.

11 (Dirichlet, 1829) If even discontinuous functions can have integrals,
are there any functions which cannot? Find the area of the smallest
circumscribed rectangle and the largest inscribed rectangle for the
area bounded by x	 0, the x-axis, x	 1 and the function defined
by

f (x)	�
1

0

when x is rational,

when x is irrational;

on the interval [0, 1].

As we search for a definition of � 

�
f, we will limit our attention to

functions which are bounded, so that they may be covered above and
below, by rectangles, and we seek a definition with the following two
properties which we retain from our experience of finding areas with
curved boundaries using inscribed and circumscribed polygons:

(i) if m� f (x)�M on [a,b], then m(b� a)��



�

f�M(b� a);

(ii) �
�

�

f��



�

f	�



�

f, when these integrals exist.

Step functions

In qns 12—15, we construct a family of functions, called step
functions, with convenient, and obvious, integrals, which we define in qn
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15. These functions are not generally either positive or continuous, but
they will be able to play the rôle of inscribed and circumscribed
polygons for us in an analytical setting. The use of properties (i) and (ii)
in qns 12—15 is to establish the reasonableness of the definition of the
integral of a step function when it comes in qn 15.

12 If f (x)	A on [a, b], show that there is a unique definition of �

�
f

which is compatible with (i) above.

B

A

a c c + h b

13 If f (x)	A on [a, c] and f (x)	B on (c, b], with A�B use the
equation

�



�

f	�
�

�

f��
���

�

f��



���

f

to show that

(c� a)A� hA� (b� c� h)B��



�

f

� (c� a)A� hB� (b� c� h)B

so

(c� a)A� (b� c)B� h(B�A)��



�

f

� (c� a)A� (b� c)B

and, if this is to hold for all h, however small, � 

�
f must be defined

as (c� a)A� (b� c)B.
Is the same definition necessary if A�B?

14 Show that the value of the integral found in qn 13 must also be the
value of the integral for the function, f, defined by
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C

B

A

a c + hc    h b

f (x)	A on [a, c),
f (c)	C,
f (x)	B on (c, b],

by using the equation �



�

f	�
���

�

f��
���

���

f��



���

f.

Start working with A�B�C.

15 Let a	x
�
� x

�
� x

�
� . . .�x

�
	 b, and a real function f be

defined on [a, b] such that f (x)	A
�
, for x

���
� x� x

�
,

i	 1, 2, . . ., n; and f (x
�
)	B

�
, i	 0, 1, 2, . . ., n.

Such a function is called a step function.
Use qn 14 to prove that if this step function has an integral
compatible with properties (i) and (ii) before qn 12, then its value is

���
�
���

(x
�
� x

���
)A

�
.

We now adopt this result as the definition of the integral of a step
function.

Lower integral and upper integral

16 Consider a function f: [a, b]� [m,M]. Let s: [a, b]� R be a step
function such that s(x)� f (x) for all values of x. Such a step
function is called a lower step function for f.

We call �



�

s, a lower sum for f.

Why must m(b� a) be a lower sum for f ?
Why must every lower sum be�M(b� a)?
Since, for the given bounded function f, the set of all lower sums is
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non-empty and bounded above it has a supremum, which is called
the lower integral for f, and is denoted by � 


�
f.

17 Every bounded function on a closed interval has a lower integral.
Find the lower integral for the function in qn 11.

18 Consider a function f: [a, b]� [m,M]. Let S: [a, b]� R be a step
function such that S(x)� f (x) for all values of x. Such a step
function is called an upper step function for f.
We call � 


�
S, an upper sum for f.

Why must M(b� a) be an upper sum for f ?
Why must every upper sum be greater than or equal to m(b� a)?
Since, for the given bounded function f, the set of all upper sums is
non-empty and bounded below it has an infinimum, which is called

the upper integral for f, and is denoted by � 

�
f.

19 Find the upper integral for the function in qn 11.

It is in proving the existence of upper and lower integrals for
bounded functions that completeness is needed in building a theory of
integration.

x0 x1 x2 x3

y3z5z4

y2z3z2

y1z1

y0z0

s

S

20 (Darboux, 1875) For a given bounded function f: [a, b]� R, let S be
an upper step function, which is constant on the intervals (x

���
,x

�
)

where a	x
�
�x

�
�x

�
� . . .� x

�
	 b.

Let s be a lower step function which is constant on the intervals
(y

���
, y

�
) where a	 y

�
� y

�
� y

�
� . . .� y

�
	 b.

Let �z
�
, z

�
, z

�
, . . ., z

�
� 	 �x

�
, . . .,x

�
���y

�
, . . ., y

�
� where

a	 z
�
� z

�
� z

�
� . . .,� z

�
	 b.

Why are both S and s constant on each of the intervals (z
���

, z
�
)?

Prove that s(x)� S(x) on such an interval.
Does � 


�
S have the same value whether it is calculated on the

intervals (x
���

,x
�
) or on the intervals (z

���
, z

�
)? What is the
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corresponding claim for � 

�
s? Deduce that the lower sum from the

lower step function s� the upper sum from the upper step function
S. The idea of uniting the two dissections is due to Cauchy, 1823.
You have proved that every lower sum� every upper sum.

21 Show that for any bounded function f: [a, b]� R, the lower integral

must be less than or equal to the upper integral, that is � 

�
f� � 


�
f,

by showing that if this were false, we could use the basic property
of supremum and infimum (see qns 4.64 and 4.72) to contradict the
result of qn 20.

Putting together the definitions of upper and lower integral with
the results of qns 20 and 21, we obtain

�



�

s� �



�

f��



�

f��



�

S,

for all lower step functions s and all upper step functions S.

M

ba

b

a

b        a

m

c

b        a

b

a

b        a

22 Verify that any number lying between the upper integral and the
lower integral would satisfy the conditions we stated before qn 12
for the integral �


�
f.

The Riemann integral

Question 22 implies that no unique integral satisfying the

conditions (i) and (ii), as stated before qn 12, can exist unless � 

�
f	 � 


�
f,

and then � 

�
f must equal the common value. When this is the case the

bounded function f is defined to be integrable (or more precisely

Riemann integrable) on [a, b], and the common value of � 

�
f and � 


�
f is

called the Riemann integral of the function.
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When � 

�
f�� 


�
f, we say that the function f is not integrable on

[a, b]. A function which is not bounded cannot have an integral in this
sense.

23 Use the basic property of an infimum (see qn 4.72) and the
analogous property of a supremum, to show that if the function f is

integrable on [a, b] (that is � 

�
f	 � 


�
f	 � 


�
f ) then it is possible to

find an upper sum and a lower sum for f which are arbitrarily close
to each other; that is, given 
� 0, it is possible to find an upper
step function S and a lower step function s such that

�



�

S��



�

s�
.

24 (Converse of qn 23.) If for a function f: [a, b]� R it is possible to
find upper sums and lower sums whose differences are arbitrarily
small, use the chain of inequalities before qn 22 to prove that the
upper and lower integrals are equal, so that the function is
integrable.

Question 24 provides the standard test for integrability. We proved
in qns 12—15 that a step function was necessarily integrable. In qns 7
and 8 we have an argument which shows that a bounded monotonic
function is integrable even if it is not continuous.

25 Prove that the function f: [0, 1]� [0, 1], given by

f (1/n)	 1

f (x) 	 0

when n	 1, 2, 3, . . .,

otherwise,

is integrable.

Summary – definition of the Riemann integral

Step functions

Definition
qn 15

A function s: [a, b]� R is called a step function
if, for some subdivision
a	x

�
�x

�
�x

�
� . . .� x

�
	 b,

s(x)	A
�
when x

���
�x�x

�
, i	 1, 2, . . ., n;

s(x
�
)	B

�
when i	 0, 1, . . ., n.

The integral of this step function is

�



�

s	
���
�
���

A
�
(x

�
� x

���
).
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Definition
qns 16, 18

If s: [a, b]� R is a step function and
f: [a, b]� R is a function, s is called a lower step
function for f when s(x)� f (x) for all values of x,
and s is called an upper step function for f when
f (x)� s(x) for all values of x.
When s is a lower step function, its integral is
called a lower sum for f. When s is an upper step
function, its integral is called an upper sum for f.

Theorem
qns 16, 18

Any bounded function f: [a, b]� [m,M] has an
upper sum M(b� a) and a lower sum m(b� a).

Theorem
qn 20

Each lower sum of a bounded function f:
[a, b]� R is less than or equal to each upper
sum.

The Riemann integral

Definition
qns 16, 18

The supremum of the lower sums of a bounded
function f: [a, b]� R is called the lower integral
of f and denoted by � 


�
f.

The infimum of the upper sums of f is called the

upper integral of f and denoted by � 

�
f.

Theorem
qn 21

For a given bounded function f: [a, b]� R,
each lower sum� the lower integral
each lower sum� the upper integral
each lower sum� each upper sum.

Definition
qn 22

A bounded function f: [a,b]� R is said to be
Riemann integrable when its upper integral is
equal to its lower integral. Their common value
is called the Riemann integral of the function
and denoted by � 


�
f.

Theorem
qns 23, 24

A function f: [a, b]� R is Riemann integrable if
and only if, given 
� 0, there exists an upper
sum � and a lower sum �, such that � �� �
.

Theorem
qns 7, 8, 10�

Every function which is monotonic on a closed
interval is integrable.

Theorems on integrability

While obtaining the basic algebraic properties of integrals (in qns
26—31) it will be useful to have notation available that will not have to
be repeatedly defined. We suppose that the integrable function
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f: [a, b]� R has integral F, and, following qn 23, given 
 � 0, f has a
lower step function s with lower sum � and an upper step function S
with an upper sum �, such that � �� �
.

26 If, for k� 0, the function k · f is defined by

k · f: x� k · f (x),

show that k · s is a lower step function and k ·S is an upper step
function for k · f and deduce from qn 24 that k · f is integrable, and
has integral k ·F.

27 If the function �f is defined by

�f: x��f (x),

show that �S is a lower step function and �s is an upper step
function for �f, and deduce from qn 24 that �f is integrable and
has integral �F.

28 From qns 26 and 27 extend the result of qn 26 to show that the
result in that question holds for any real value of k.

We suppose further that the integrable function g: [a, b]� R has
integral G and, following qn 23, given 
� 0, g has a lower step function
s� with lower sum �� and an upper step function S� with upper sum ��,
such that ������
.

29 If the function f� g: [a, b]� R is defined by

f� g: x� f (x)� g(x),

show that s� s� is a lower step function for f� g and that S�S� is
an upper step function for f� g, and that the difference between the
upper and lower sums for these step functions is (�� �)� (�����).
Deduce that f� g is integrable and has integral F�G.

Putting together the results of qns 28 and 29, we can show that, if
f: [a, b]� R is integrable with integral F and g: [a, b]� R is integrable
with integral G, then the function k · f� l · g is integrable with integral
k ·F� l ·G. This makes the obtaining of an integral a linear function of
the family of integrable functions on the domain [a, b].

30 Use qns 28 and 29 with qn 4 to determine the value of � �
�
f when:

(i) f (x)	 x�� x�;
(ii) f (x)	 2x� 3x�� 4x�;
(iii) f (x)	 c

�
� c

�
x� c

�
x�� . . .� c

�
x�.
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31 If the function f� is defined by

f�(x)	�
f (x)

0

when f (x)� 0,

when f (x)� 0,

prove that s� is a lower step function for f� and that S� is an
upper step function for f�. Then by considering s� and S� on the
intervals on which both are constant, as in qn 20, show that the
difference between the upper and lower sums which they give is less
than or equal to � ��. Deduce that, if f is integrable, then so is f�.

32 If the function f� is defined by

f�(x)	�
0

f (x)

when f (x)� 0,

when f (x)� 0,

show that f�(x)	�(�f )�(x) for all values of x.
Deduce from qns 27 and 31 that, if f is integrable, then so is f�.

33 If the function � f � is defined by

� f � (x)	�
f (x)

�f (x)

when f (x)� 0,

when f (x)� 0,

check that � f � 	 f� � f�, and deduce that, if f is integrable, then
so is � f � .

34 Give an example to show that � f � may be integrable even when f is
not.

35 Use the inequality

� �



�

f� ��



�

f� �� � �



�

f� �� � �



�

f� � ,
which follows from the triangle inequality of qn 2.61 to prove that
� �


�
f �� �


�
� f � , when f is integrable on [a, b].

36 (This is a hard question on which nothing further in this book
depends, but it opens up the question as to what functions may be
Riemann integrable in a most dramatic way.)
(Thomae, 1875) In qn 6.72 we examined the continuity of the ruler
function f defined on [0, 1] by

f (x)	 0 when x is irrational or zero
f (p/q)	 1/q when p and q are non-zero integers with no

common factor.

We found that this function was continuous at each irrational point

264 10 Integration



and discontinuous at each rational point, except 0.
We will consider the integrability of this function on the interval
[0, 1] by seeking an upper sum and a lower sum which differ by
less than 
� 0.

(i) Identify a lower step function for which the lower sum	 0.
(ii) Choose a positive integer m such that 1/m� �

�

. Show that

there cannot be more than �
�
m(m� 1) points x � [0, 1] such

that f (x)� 1/m.
(iii) Suppose that there are exactly N such points, which we

denote in order of magnitude by c
�
, c

�
, c

�
, . . ., c

�
.

Find a value of � such that an upper step function defined on
the subdivision

0� c
�
� �� c

�
� � � c

�
� �� c

�
� ��

. . .� c
�
� �� 1

by

S(x)	 1 when c
�
� � �x� c

�
� �,

S(x)	 1/m otherwise,

gives an upper sum�
, where points are suppressed in the
subdivision where there is overlap.

(iv) Deduce that the function is Riemann integrable on [0, 1].

Integration and continuity

37 (i) Why is the function f defined by f (x)	 1/x when x� 0 and
f (0)	 0 not integrable on [0, 1]?

(ii) Give an example to show that a function which is not
continuous at one point of a closed interval may none the less
be integrable on that interval.

38 A real function f is continuous on [a, b]. How do you know that f
is bounded and that therefore f has an upper and a lower integral?

39 (Cauchy, 1823) The real function f is continuous on [a, b] and
a	x

�
�x

�
�x

�
� . . .� x

�
	 b.

(i) Must the function f be bounded and attain its bounds on
[x

���
,x

�
]?

(ii) Let m
�
	 inf� f (x) �x

���
�x�x

�
�,

and M
�
	 sup� f (x) �x

���
� x�x

�
�.

Explain why � ���
���
m

�
(x

�
�x

���
) is a lower sum for f and why

� ���
���
M

�
(x

�
� x

���
) is an upper sum for f.
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(iii) Now suppose that the division of the interval [a, b] has been
into n equal lengths, so that x

�
�x

���
	 (b� a)/n for all

values of i	 1, 2, . . ., n. Check that in this case the difference
between the upper sum and the lower sum

	
b� a

n

���
�
���

(M
�
�m

�
).

If it were possible to prove that this may be made less than
any given 
� 0, we would have succeeded in proving that f
was integrable.
Now use the fact that a function which is continuous on a
closed interval is uniformly continuous on that interval to
show that, for any given 
� 0, there exists a �� 0 such that
�x� y ���� � f (x)� f (y) �� 
/(b� a).
Show how to choose n so that the difference of upper and
lower sums previously calculated is less than 
.

This establishes that a continuous function on a closed interval is
integrable.

40 Does the converse of the result at the end of qn 39 hold? If a
function is integrable must it be continuous?

41 � 

�
f	 0 and f (x)� 0 for all x � [a, b]. If f is continuous, prove that

f (x)	 0 for all x � [a, b]. What if f were not necessarily continuous?

42 If f and g are integrable on [a, b] and � 

�
(k · f� l · g)�	 0, under

what conditions could you deduce that k · f (x)	�l · g(x) for all
x � [a, b]?

43 (i) If f is a continuous function on [a, b], prove that

b� a

n

���
�
���

f�a�
i

n
(b� a)�

lies between the upper sum and the lower sum calculated in
qn 39.

(ii) Deduce that its limit as n� � is � 

�
f.

(iii) Check that the limit obtained coincides with the measurement
of area in qns 1 and 2.

The notation for integrals, proposed by Leibniz, which is in
standard use today, namely � f (x) dx, is deliberately suggestive of the
limit of the sum � f (x

�
)�x

�
, where �x

�
denotes the difference x

�
�x

���
,

and the limit is taken as the greatest of the �x
�
� 0.
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44 Determine whether the functions f and g defined below are
integrable on the interval [0, 1].

f (x)	 x sin(1/x) when x� 0, and f (0)	 0.
g(x)	 sin(1/x) when x� 0, and g(0)	 0.

For g you can consider [0, 1]	 [0, �
�
]� [�

�
, 1].

Mean Value Theorem for integrals

45 (Cauchy, 1823) If f is a continuous function on [a, b],

m	 inf� f (x) � a�x� b� and M	 sup� f (x) � a�x� b�,

explain why m(b� a)� � 

�
f�M(b� a).

Deduce that, for some c � [a,b], � 

�
f	 f (c) · (b� a).

This is called the Mean Value Theorem for integrals.
If a	x

�
�x

�
�x

�
� . . .� x

�
	 b, and x

�
� x

���
	 (b� a)/n,

show that

��
���
�
���

f (x
�
)�/n�� f (c) as n��.

Integration on subintervals

46 If a function f is integrable on [a, b] and a� c� d� b, prove that f
is integrable on [c, d].

47 If a function f is integrable on [a, b] and a� c� b, prove that
� 

�
f	 � �

�
f� � 


�
f. We started using this as an intuitively desirable

property for integrals, but now that we have a formal definition of
what an integral is we need to prove that it is a formal consequence
of the definition.

48 Make a definition of � �
�
f for any function f, which is compatible

with the result of qn 46 in case c	 a or c	 b.
Define � 


�
f in terms of � �



f in a way which will extend the validity of

the result in qn 47 whatever the order of the numbers a, b and c on
the number line.

Summary – Properties of the Riemann integral

Theorem
qns 3, 4, 5

If f (x)	x� for n an integer��1, then
� �
�
f	 a���/(n� 1).
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Theorem
qns 6, 9 If f (x)	 1/x, then �


�




f	�
�

�

f	 lim
���

n( ��a� 1).

Theorem
qns 26, 27,

28

If f: [a, b]� R has integral F, then k · f has
integral k ·F for any real number k.

Theorem
qns 33, 35

If f: [a, b]� R is integrable, then � f � is also
integrable, and � � 


�
f � � � 


�
� f � .

Theorem
qn 29

If f: [a, b]� R has integral F and g: [a, b]� R

has integral G, then f� g has integral F�G.
Theorem

qn 39
If f: [a, b]� R is continuous, then f is integrable.

Mean Value Theorem for integrals
qn 45 If f: [a, b]� R is continuous,

then � 

�
f	 f (c) · (b� a) for some c � [a,b].

Theorem
qn 46

If f: [a, b]� R is integrable and a� c� d� b,
then f: [c, d]� R is integrable.

Theorem
qn 47

If f: [a, b]� R is integrable and a� c� b, then

�



�

f	�
�

�

f��



�

f.

Definition
qn 48 �

�

�

f	 0 and �
�




f	��



�

f.

Indefinite integrals

49 Give a reason why the integer function defined by f (x)	 [x] is
integrable on any closed interval.
Give a formula for F(x)	 ��

�
f

(i) when 0� x� 1,
(ii) when 1� x� 2,
(iii) when 2� x� 3.

Is the function F continuous at x	 1 and x	 2?

50 (Darboux, 1875) The function f is given to be integrable on the
interval [a, b] and a function F is defined on the interval [a, b] by

F(x)	�
�

�

f.

Prove that F is continuous at every point of [a,b].
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Identify a real number L such that �F(x)�F(y) �� L · �x� y �
for all x and y in [a, b].
The function F is called an indefinite integral for f.

51 (Darboux, 1875) Let f be a function which is integrable on [a, b],
and suppose there exists a function F such that F�(x)	 f (x) for all
x � [a, b].
Suppose also that a	x

�
�x

�
� x

�
� . . .�x

�
	 b is a subdivision

of [a, b].

(i) How do you know that there exists a c
�
� (x

�
, x

���
) such that

F(x
�
)�F(x

���
)

x
�
� x

���

	F�(c
�
)?

(ii) By adding equations of the type

F(x
�
)�F(x

���
)	 f (c

�
)(x

�
�x

���
),

show that

F(b)�F(a)	
���
�
���

f (c
�
)(x

�
� x

���
).

(iii) Deduce that F(b)�F(a)	�



�

f.

It is customary to write F(b)�F(a)	 [F(x)]

�
.

There was no requirement in qn 51 that f be continuous.

52 Apply qn 51 on [0,x] to
F(x)	x� sin(1/x) for x� 0,
F(0)	 0.

In qn 51, two conditions were postulated, namely
(i) f is integrable on [a, b], and
(ii) F�(x)	 f (x).

This second condition appears to imply that f has an anti-derivative as
will be defined after qn 54, and therefore might be thought to imply
that f is integrable, but this is not so. Conditions (i) and (ii) are
independent, as qn 53 will show. There are even bounded derivatives
which are not integrable as Volterra found in 1881.

53 Suppose F(x)	x� sin(1/x�) when x� 0 and F(0)	 0. Check that F
is differentiable on [0, 1]. Use computer graphics to examine the
graph of F�. Show that F� is unbounded on [0, 1] and so not
integrable.
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The Fundamental Theorem of Calculus

54 (Cauchy, 1823) Let f be a continuous function on [a, b] and let

F(x)	�
�

�

f.

(i) Why, for some �, 0��� 1, must
F(x� h)�F(x)	 h · f (x� �h)?

(ii) Deduce that
F(x� h)�F(x)

h
� f (x)	 f (x� �h)� f (x).

(iii) Use the continuity of f to show that F�(x)	 f (x).
This result is the Fundamental theorem of Calculus.

When f is continuous and F�(x)	 f (x) it is customary, following
Leibniz, to write F(x)	 � f (x) dx (echoing � f (x

�
)(x

�
�x

���
)) and F is

called an anti-derivative for f. F may be differentiable even when f is
discontinuous, as in qn 36.

55 If both F and G are anti-derivatives for f on a given interval, use
the Mean Value Theorem to deduce that F(x)�G(x) is
independent of x. Use this to verify that F(b)�F(a)	G(b)�G(a).

As a consequence of qn 55, it follows that, if F is an anti-derivative
of f, then every other anti-derivative of f has the form x�F(x)� c, for
a constant real number c.

(56) A function f is integrable on a neighbourhood of a and

lim
����

f (x)	 L. Show that

lim
����

F(a� h)�F(a)

h
	 L,

where F is defined as in qn 54. Claim the corresponding result for
left-hand limits. Deduce that if f is continuous at a, then F is
differentiable at a, and F�(a)	 f (a), but that if f has a jump
discontinuity at a (see qn 6.79), then F is not differentiable at a.

Integration by parts

57 If both the functions f and g have continuous derivatives, use the
fact that f · g is an anti-derivative of f · g�� f � · g to prove that

�



�

f � · g	 [ f · g]

�
��




�

f · g�.
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58 If the function f has a continuous second derivative on [a, b], prove
that

f (b)	 f (a)� (b� a) f �(a)��



�

(b�x) f 
(x) dx.

59 (Cauchy, 1823, Taylor’s Theorem with integral form of the remainder)
If the function f is infinitely differentiable on R, prove by induction,
using integration by parts, that for any real numbers a and b:

f (b)	 f (a)� (b� a) f �(a)�
(b� a)�f 
(a)

2!
� . . .�

(b� a)�f 
��(a)

n!

�
1

n!�



�

(b� x)�f 
����(x) dx.

If f (x)	 sinx and a	 0, show that the last term of this expansion
tends to 0, as n��.
Apply the Mean Value Theorem for integrals (qn 45) to deduce the
Cauchy form of the remainder for a Taylor Series (qn 9.45).

Integration by substitution

60 If f is a continuous function on [g(a),g(b)] with F�	 f, and the
function g has a continuous derivative on [a, b], identify an
anti-derivative for the function ( f � g) · g�.
Justify each of the equations

�
�

�

�
��

f	 [F]�

�
�
��

and �



�

f (g(x)) · g�(x) dx	 [F(g(x))]

�
.

What further condition must the function g satisfy if we are to be
sure that all four expressions are equal?

Leibniz’ notation is helpfully suggestive here as it takes the form

� f (g) dg	� f (g(x))
dg

dx
dx.

Improper integrals

61 If a and b are positive numbers, find the value of � 

�
f where

f (x)	 1/x�.

Determine lim

��

�



�

f.
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When a function f is integrable on the interval [a, b] with integral I,
and I� L as b��, we write ��

�
f	 L. When the limit exists, ��

�
f is

called an improper integral.
In qns 5.56—5.61 there are theorems which show that the existence

of an improper integral may be equivalent to the convergence of an
infinite series.

62 Give a definition for �

��

f analogous to that above. Illustrate your
definition with an example. When the limit exists, � 


��
f is called an

improper integral.

63 If a and b are positive numbers, find the value of � 

�
f where

f (x)	 1/�x.

Determine lim
�����




�

f.

When a function f is integrable on the interval [a, b] with integral I,
and I� L as a� c�, we write � 


�
f	 L, even when f is not integrable on

[c, b]. When this limit exists � 

�
f is called an improper integral.

64 Find �
�

��

dx

�(1�x)
as an improper integral.

If �1� a� 0, show that 0��
�

�

dx

�(1�x�)
��

�

�

dx

�(1�x)
.

Deduce that �
�

��

dx

�(1�x�)
exists as an improper integral.

65 Give a definition for � �
�
f when f is integrable on [a, b] but not on

[a, c], analogous to that above.
Illustrate your definition with an example.

66 Find �
�

�

dx

�(1� x)
as an improper integral.

If 0� a� 1, show that 0��
�

�

dx

�(1�x�)
��

�

�

dx

�(1�x)
.

Deduce that �
�

�

dx

�(1� x�)
exists as an improper integral.

67 A function f is defined for x� 0 by

f (x)	
(�1)�

n� 1
when n� x� n� 1; n	 0,1, 2, . . .

Do either (or both) of
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�
�

�

f or �
�

�

� f �

exist?
Compare this result with qn 33.

68 Find the limit of
1

�n�
1

1
�

1

�2
�

1

�3
� . . .�

1

�n� as n��.

Use qn 5.59.

Summary – The Fundamental Theorem of Calculus

Theorem
qn 53

If f: [a,b]� R is integrable, then the function F
defined by F(x)	 � �

�
f, is continuous on [a, b].

Theorem
qn54

If f: [a,b]� R is integrable and F�(x)	 f (x),

then �



�

f	F(b)�F(a).

The Fundamental Theorem of Calculus

qn 57 If f: [a,b]� R is continuous and F(x)	 � �
�
f,

then F�(x)	 f (x).

Improper integrals – definitions

qn 63 If I(b)	 � 

�
f and I(b)� L as b��, then we

write
��
�
f	 L.

qn 67 If I(b)� L as b� c�, then we write � �
�
f	 L.

qn 64 If I(a)	 � 

�
f and I(a)� L as a���, then we

write � 

�� f	 L.

qn 65 If I(a)� L as a� c�, then we write � 

�
f	 L.

Historical note

In Archimedes’ book on the Quadrature of the Parabola (c. 250 ..)
he finds the area bounded by a parabolic segment by inscribing a
succession of triangles and summing their areas with a geometric series.
In this later work On Spirals he included a summation of segments of
areas which led to the same algebraic calculations and argument as in
our qn 1. Cavalieri, a pupil of Galileo, published further studies of area
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in 1635 and 1647, in which by ingenious use of certain cases of the
Binomial Theorem he obtained the area under y	x� and y	x
, and
suggested a formula for the area under y	 x� for positive integral n.
Proving this result and extending it to all rational n� �1 (as in qns
3—5) is commonly credited to Fermat who claimed the result in general
form, about 1643, though Torricelli also obtained the result about this
time. The connection between the area under a rectangular hyperbola
and logarithms was identified by Gregory of St Vincent (1647) and
A. A. de Sarasa (1649).

In a book written by Isaac Barrow, Newton’s predecessor as
Lucasian professor at Cambridge, and published in 1669, while
discussing continuous and monotonic distance—time and velocity—time
graphs, Barrow described the Fundamental Theorem of Calculus. The
description is geometrical (and therefore, from a modern viewpoint,
hard to recognise) and the proof uses infinitesimals. Newton helped
Barrow to write the book, and there was a copy of it in Leibniz’
personal library. From his papers, we know that Newton came to
understand the Fundamental Theorem in the year 1665—6. He
considered two variables x and y (which he called fluents) changing
with time. Their rates of change he denoted by x� and y� (which he called
fluxions) and he obtained A� /x� 	 y, where A is the area under the graph
of y against x. Newton’s discovery of the inverse relationship between
integration and differentiation, or as he would have put it, between the
method of quadratures and the method of fluxions, transformed the
study of areas and generated a range of powerful applications. Newton’s
readiness to differentiate and integrate power series term by term
(without tests of convergence) brought a further host of significant
results relating to the binomial series and trigonometric functions.
Leibniz obtained Newton’s fundamental theorem independently in 1675.
In his Principia (1687), Newton included a proof that any monotonic
function was integrable. His illustrations show that he was considering
only differentiable monotonic functions, but all the functions he was
concerned with were piecewise monotonic, so his proof dealt
satisfactorily with his field of concern. Quite trivially, his proof may be
extended to show that discontinuous monotonic functions are
integrable, but this was not done until the integrability of such
functions was considered in the second half of the nineteenth century.

The wide application of this result and the fact that, in the century
following Newton and Leibniz, functions were considered to be
infinitely differentiable meant that, during the eighteenth century, the
study of integration consisted of the search for anti-derivatives. It was
Cauchy (1823) who shifted his attention from the indefinite to the
definite integral for the purpose of defining the integral of a continuous

274 10 Integration



function (a more general notion of function than had been considered
in the eighteenth century) as the limit of � f (x

�
)(x

�
� x

���
) as the lengths

of the subintervals � x
�
�x

���
� tend to 0. Although Cauchy presumed

uniform continuity for his functions, the definition enabled him to prove
the Fundamental Theorem of Calculus as we know it. In the same
lectures, Cauchy obtained the Taylor series with integral form of the
remainder. In 1822 Fourier’s work on the conduction of heat raised the
possibility of the integrability of discontinuous functions obtained from
trigonometric series. Cauchy acknowledged that his definition of the
integral could be applied to a function with a finite number of
discontinuities and gave formal definitions for improper integrals.
Dirichlet who had discussions with Fourier, and perhaps Cauchy, in
Paris published his famous example (qn 11) of a function which is not
equal to a Fourier series and is not integrable in Cauchy’s sense in 1829
and asserted in the same paper that a function was integrable in
Cauchy’s sense provided its discontinuities were nowhere dense.

Riemann tackled the subject of what functions could be integrable
under the direction of Dirichlet, and in 1854 prepared a lecture in
Göttingen (which was not published until 1868, after his death) in
which the possibility of the integration of trigonometric series was
considered to a depth that was to be definitive for the rest of the
century. Riemann’s definition of integral was the limit of
� f (t

�
)(x

�
�x

���
), where x

���
� t

�
� x

�
, as the lengths of the subintervals

�x
�
� x

���
� tend to 0, which is equivalent to Cauchy’s definition but

without the restriction to continuous functions, and he constructed a
function which was integrable in this sense but which was
discontinuous on a set of points that was everywhere dense. We have
given an example of such a function in qn 36 (using a construction due
to Thomae, 1875). Riemann’s example was put together rather
differently: let g(x)	 0 when x� [x]	�

�
and let g(x)	x� [x� �

�
]

otherwise, then Riemann’s function

f (x)	 g(x)�
g(2x)

2�
�
g(3x)

3�
� . . .�

g(nx)

n�
� . . .

which is discontinuous at every point x	 p/2q, where p and q are odd
numbers without a common divisor. The function f is none the less
integrable because the series is uniformly convergent everywhere.

The treatment of the Riemann integral that we have given, with
step functions, upper and lower sums, and upper and lower integrals is
due to Darboux (1875). Darboux showed that the integral of Riemann’s
function was continuous and not differentiable at the points where the
original function was discontinuous.
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Answers

1 BEFC is an inscribed polygon. ODEGHC is a circumscribed polygon.
Three inscribed rectangles of width �

�
a: heights 0, a�/9, 4a�/9.

Combined area	 �
�
a(a�/9� 4a�/9)	 5a�/27.

Three circumscribed rectangles of width �
�
a: heights a�/9, 4a�/9, a�.

Combined area	 �
�
a(a�/9� 4a�/9� a�)	�

�
a · 14a�/9.

5a�/8� a�/8	 4a�/8	�
�
a�. 14a�/27� 5a�/27	 9a�/27	�

�
a�.

�1�
1

n��1�
1

2n��
A

�
�
a�

��1�
1

n��1�
1

2n� .
Each of the bounds tends to 1 as n� �, so no number different from
A	�

�
a� will satisfy all the inequalities.

4 a���(1� r)r�

1� r���
�C�

a���(1� r)

1� r���
.

5 Let r� 1, then
r���(r� 1)

r�(r���� 1)
�C�

r���(r� 1)

r���� 1
.

After division we have

1

r(r��� � r���� . . .� 1)
�C�

r���

r���� r���� . . .� 1
.

Since this holds for all r� 1, C	 1/(k� 1), the limit of each side of the
inequality as r� 1.

6 Let h	 ��a. Inscribed rectangles have area

(h� 1)/h� (h�� h)/h�� . . .� (h�� h���)/h�	 n(h� 1)/h.

Circumscribed rectangles have area

(h� 1) · 1� (h� � h)/h� . . .� (h�� h���)/h��� 	 n(h� 1).

The sequence (n( ��a� 1)) is monotonic decreasing from qn 2.50 so,
from qn 3.78, the closed interval property, its limit�D� its limit.

7 (i) Since c	�
�
(a� b), b� c	 c� a	 �

�
(b� a). Thus the first

inequality is equivalent to f (a)� f (c); the third to f (c)� f (b); and
the second to these two together.

(ii) Apply the argument of (i) to each of the n subintervals.
(iii) From (ii), (I

��
) is monotonic increasing. It is bounded above by

C
�
.

So it is convergent by qn 4.35.
(iv) From (ii), (C

��
) is monotonic decreasing. It is bounded below by

I
�
.

So it is convergent by qn 4.34.
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(v) C
�
� I

�
	 (b� c) f (b)� (c� a) f (a)	 �

�
(b� a)( f (b)� f (a)). Draw a

figure for C
�
� I

�
.

(vi) (C
�
� I

�
)�C� I	 0. I

�
� area�C

�
.

8 All the inequalities would have been reversed.

9 (i) n maximal rectangles with equal width inscribed in the area
bounded by y	 1/x, x	 b, the x-axis and x	 ba have area

ba� b

n �
1

b� (1/n)(ba� b)
�

1

b� (2/n)(ba� b)
� . . .

�
1

b� (n/n)(ba� b)�
	
a� 1

n �
1

1� (1/n)(a� 1)
�

1

1� (2/n)(a� 1)
� . . .

�
1

1� (n/n)(a� 1)�
which is the area of n maximal rectangles with equal width
inscribed in the area bounded by y	 1/x, x	 1, the x-axis and
x	 a.

(ii) Since y	 1/x is monotonic decreasing for positive x, the areas
under the curve are well defined by qn 8. The two areas are each
equal to the limit of the sums of the areas of the inscribed
rectangles as n� �.

(iii) Area under graph on [1, ab]
	 area under graph on [1, b]� area under graph on [b, ab]
	 area under graph on [1, b]� area under graph on [1, a] by (ii).

(iv) lim n( ��(ab)� 1)	 lim n( ��a� 1)� lim n( ��b� 1) as n� �.
See also qn 4.41.

10 Let f (x)	 x� and g(x)	�x�: both functions are monotonic for
positive x. On a positive interval � 


�
f� g	 0, while � 


�
f	 � 


�
g� 0 if all

integrals were positive.

11 Inscribed area	 0. Circumscribed area	 1. Not equal, so no integral.

12 A� f (x)�A, so A(b� a)��



�

f�A(b� a) and �



�

f	A(b� a).

13 The same definition is necessary when A�B.

14 Suppose that A�B�C (the argument can be easily adapted for other
orderings of these numbers).

A(c� h� a)� 2hA�B(b� c� h)	�



�

f

	A(c� h� a)� 2hC�B(b� c� h)
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which gives

A(c� a)�B(b� c)� h(B�A)	�



�

f

	A(c� a)�B(b� c)� h(2C�B�A).

If this must hold for all h, however small, �



�

f	A(c� a)�B(b� c).

15 The argument of qn 14 shows that a distinct value at an isolated point
does not affect the value of the integral. Questions 12 and 13 establish
the rest of the result.

16 Since m� f (x), s(x)	m defines a lower step function, so m(b� a) is a
lower sum.
Now s(x)� f (x)�M for all x, so if s(x)	A

�
when x

���
� x� x

�
,

A
�
�M.

So A
�
(x

�
� x

���
)�M(x

�
�x

���
), and �




�

s�M(b� a).

17 Every lower step function� 0, so every lower sum� 0. But 0 is a
lower sum, so the lower integral is 0.

18 Since f (x)�M, S(x)	M defines an upper step function, so M(b� a) is
an upper sum.
m� f (x)�S(x) for all x so, using the argument in qn 16.
m(b� a)� � 


�
S.

19 Every upper step function� 1, so every upper sum� 1. But 1 is an
upper sum, so the upper integral is 1.

20 Since z
�
	 x

�
for some i or y

�
for some j, the open interval (z

���
, z

�
) is

contained both within an interval of the type (x
���

, x
�
), so that S is

constant on (z
���

, z
�
), and within an interval of the type (y

���
, y

�
), so

that s is constant on (z
���

, z
�
).

If z
���

� x� z
�
, then s(x)� f (x)� S(x), so s(x)� S(x) on each of the

open intervals (z
���

, z
�
). So, calculated on the z-intervals, � 


�
s� � 


�
S.

If (x
���

,x
�
)	 (z

���
, z

�
), then (x

�
�x

���
)A	 (z

�
� z

���
)A

	 (z
�
� z

���
)A� (z

���
� z

���
)A� . . .� (z

�����
� z

���
)A, and so � 


�
S

has the same value whichever intervals it is defined on. Likewise for
� 

�
s.

So � 

�
s� � 


�
S for any upper and lower step functions S and s for the

function f.

21 Suppose � 

�
f� � 


�
f and that �


�
f� � 


�
f	 
� 0. Then there is an upper

step function S and a lower step function s such that

�



�

f��



�

S��



�

f� �
�

 	�




�

f��
�

��




�

s��



�

f.
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This gives � 

�
S�� 


�
s, which contradicts qn 20.

22 A constant function is a step function and therefore the inequality

� 

�
s� � 


�
f� � 


�
f� � 


�
S guarantees the first condition before qn 12 for

any supposed ‘integral’ lying between the upper and the lower integral.
The second condition also holds because it holds for step functions.

23 Since � 

�
f	 sup � 


�
s, there is a lower step function s such that

� 

�
f��

�

 �� 


�
s� � 


�
f and, since � 


�
f	 inf � 


�
S, there is an upper step

function S such that � 

�
f� � 


�
S� � 


�
f��

�

.

24 If the difference between the upper and lower integrals were 
, then to
find an upper step function S and a lower step function s such that
� 

�
S� � 


�
s� 
 would contradict the chain of inequalities before qn 22.

25 If we consider upper and lower step functions on the intervals
(0, 1/n), (1/n, 1/(n� 1)), . . ., (�



, �
�
), (�

�
, �
�
), (�

�
, 1);

then we have an upper sum	 1/n and a lower sum	 0. Since these are
arbitrarily close, the function is integrable, and has integral 0.

26 s(x)� f (x)� S(x)� k · s(x)� k · f (x)� k · S(x)� k� is a lower sum and
k� is an upper sum for k · f. k ·� � k · � � k · 
, so the difference
between an upper sum and a lower sum may be made arbitrarily small
and so k · f is integrable. Clearly the integral is k ·F.

27 s(x)� f (x)� S(x)��S(x)� �f (x)��s(x)��S is a lower step
function and �s is an upper step function for �f. So �� is a lower
sum and �� is an upper sum for �f. (��)� (��)	 �� � �
.
Clearly the integral is �F.

28 From qn 26, k · f is integrable so, from qn 27, �k · f is integrable, with
integral �k ·F.

29 s(x)� f (x)� S(x) and s�(x)� g(x)�S�(x)
� s(x)� s�(x)� f (x)� g(x)�S(x)� S�(x).
Now s� s� is a step function on the union of the subintervals for s and
s�, in the sense of qn 20, and is therefore a lower step function for f� g.
Moreover, � 


�
(s� s�)	 � 


�
s� � 


�
s� using the definition of the integral of a

step function on the union of the subintervals. So � ��� is a lower sum
for f� g, and likewise � ��� is an upper sum.
(�� ��)� (� ���)	 (���)� (�� ���)� 2
, which may be made
arbitrarily small, so f� g is integrable.
��F� � and ���G� �� ��� ���F�G� �� ��,
so the integral is F�G.

30 � �
�
x�	 a���/(k� 1) from qn 4. Some caution is called for in the appeal

to qn 4, since the dissection of [0, a] in qn 4 is infinite, and so the
approximating functions are not step functions. However, by choosing
arbitrarily large finite dissections we can obtain upper and lower sums
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as close as we like to those used in qn 4. Questions 1 and 2 use step
functions.

(i) �
�
a� ��



a
 from qn 29.

(ii) a�� a�� a
 from qns 28 and 29.
(iii) c

�
a� c

�
a�/2� c

�
a�/3� . . .� c

�
a���/(n� 1).

31 s�(x)� 0� 0� s�(x)	 s(x)� f (x)	 f�(x).
s�(x)	 0� s�(x)	 0� f�(x).
Likewise f (x)� 0� 0� f�(x)	 f (x)� S(x)	 S�(x).
f (x)� 0� f�(x)	 0�S�(x).
So s�(x)� f�(x)�S�(x).
Evidently since s and S are step functions, so are s� and S�. So we
have established that s� is a lower step function and S� is an upper
step function for f�.
Now clearly, if S�(x)	 0, then s�(x)	 0, so
S(x)� s(x)� S� (x)� s�(x)� 0. Thus the difference between the upper
sums and lower sums from S� and s�� �� ��
. So the difference
between upper and lower sums may be made arbitrarily small and so
f� is integrable.

32 f�(x)	 0� f (x)� 0��f (x)� 0� (�f )�(x)	 0.
f�(x)� 0� f (x)� 0��f (x)� 0� (�f )�(x)	 �f (x)
��(�f )�(x)	 f � (x).
f integrable� �f integrable by qn 27.
�f integrable � (�f )� integrable by qn 31� f� integrable by qn 27.

33 Examine f (x)� 0, 	 0, � 0, to show � f � 	 f�� f�.
Integrability of � f � follows from qns 31, 32, 27 and 29.

34 On the interval [0, 1] consider f (x)	 1 when x is irrational and
f (x)	�1 when x is rational.

35 From the definitions, f	 f�� f�, so the left-hand side of the
inequality	 � � 


�
f � .

� f � 	 f�� f�	 � f� � � � f� � , so � 

�
� f �	 � 


�
� f� �� � 


�
� f� �

	 � � 

�
f� �� � � 


�
f� � .

36 (i) s(x)	 0.
(ii) f (x)� 1/m� x	 p/q, where q�m. So m� 1 possible values of q.

Now 1� p� q, so at most (m� 1)� (m� 2)� . . .� 2� 1
	�

�
m(m� 1) possible values of x.

(iii) Take �� �



/N, then upper sum� 2�N� (1/m)(1� 2�N)

� �
�

� �

�

 	 
.

To avoid overlap, take � �min(�
�
(c

�
� c

���
), �



/N), then the

formula for the upper sum is exact.
(iv) Lower sum	 0, upper sum� 
. Function integrable, integral	 0.
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37 (i) The function is not bounded above, so there is no upper integral.

(ii)

�
���

���

[x]	 �
�
.

38 By qns 7.31, 7.32 and 7.34, the maximum-minimum theorem.

39 (i) Yes, as in qn 38.
(ii) s(x)	m

�
when x

���
� x� x

�
, gives a lower step function, and

S(x)	M
�
when x

���
�x� x

�
, gives an upper step function.

(iii) Choose n so that (b� a)/n� �, then

b� a

n

���
�
���

(M
�
�m

�
)�

b� a

n
·
n


b� a
	 
.

40 No. Step functions and monotonic functions are integrable whether
they are continuous or not.

41 If f (x)� 0, s(x)	 0 is a lower step function and so 0 is a lower sum.
Since � 


�
f	 0, there must be arbitrarily small upper sums. However, if

f (c)� 0 for some c, there is a neighbourhood of c on which
� f (x)� f (c) �� �

�
f (c). So for some �, �x� c � �� � f (x)� �

�
f (c). So any

upper sum� 2� · �
�
f (c), which is not arbitrarily small. This

contradiction shows that f (x)	 0 for all x. In qns 25 and 36,
discontinuous f satisfies the conditions.

42 The conclusion holds if both f and g are continuous functions, using qn
44. Otherwise we could take f as in qn 25 and g(x)	 0.

43 (i) m
�
	 inf� f (x) �x

���
�x� x

�
�,

and M
�
	 sup� f (x) �x

���
� x�x

�
�. So m

�
� f (x

�
)�M

�
, and

m
�
(x

�
�x

���
)� f (x

�
)(x

�
�x

���
)�M

�
(x

�
� x

���
).

Thus

lower sum�
���
�
���

f (x
�
)(x

�
�x

���
)� upper sum.

x
�
	 a� (i/n)(b� a) and x

�
� x

���
	 (b� a)/n.

(ii) We proved in qn 39 that the difference between these upper and
lower sums may be made arbitrarily small for sufficiently large n,
and it therefore follows that each of these tends to the integral as
n��.
Denoting the sum in question by �, lower sum� �� upper
sum� 0� �� lower sum�upper sum� lower sum, and now,
by a sandwich theorem, � tends to the integral as n� �.

(iii) This summation gives a minimal upper sum for the given
subdivision when the function is monotonic increasing.
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44 The function f is continuous on [0, 1] by qn 6.49 and is thus integrable.
s(x)	�1 is a lower step function and S(x)	 1 is an upper step
function for g. Consider step functions on [0, 1/n] and [1/n, 1]. The
function is continuous on [1/n, 1] and therefore there are arbitrarily
close upper and lower sums. On [0, 1/n] the difference between upper
and lower sums is 2/n which may be arbitrarily small. So the function
is integrable by qn 24.

45 See qns 16 and 18. Since f is continuous, (b� a) f is continuous. The
minimum value of this function is m(b� a) and the maximum value of
this function is M(b� a). Since the integral lies between these values,
or at one of them, the integral is equal to (b� a) f (c) for some c � [a, b]
by the Intermediate Value Theorem.
Divide the result of qn 43(ii) by (b� a).

46 Since f is integrable on [a, b], there exist step functions s and S giving
upper and lower sums which are arbitrarily close. If c and d were not
part of the subdivisions for these step functions, introduce these points
into the subdivision for each step function. Then the difference between
the upper and lower sums on [c, d]� the difference between the upper
and lower sums on [a, b], so f is integrable on [c, d].

47 If f is a step function the result is obvious. To obtain the result for any
integrable f, apply this result to upper and lower step functions for f.

48 To retain the equation for qn 47, we must define � �
�
f	 0 and

� �


f	�� 


�
f.

49 The function f is monotonic.

F(x)	�
0 when 0�x� 1,
x� 1 when 1�x� 2,
2x� 3 when 2�x� 3.

F is continuous at x	 1 and 2, by considering limits from above
and below at each of these points.

50 Since f is integrable, f is bounded. Let m� f (x)�M.
F(c� h)�F(c)	 � ���

�
f, so for positive h,

mh�F(c� h)�F(c)�Mh.

Thus lim
����

(F(c� h)�F(c))	 0, so lim
����

F(c� h)	F(c).

Likewise for the limit from below. Then use qn 6.89, continuity by
limits.
L 	max� �m � , �M � �.

51 (i) By the Mean Value Theorem applied to F.
(iii) Every summation of this kind lies between an upper sum and
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a lower sum evaluated on the given subdivision. Since the
subdivision is arbitrary, the only number satisfying this
condition for all possible upper step functions and all possible
lower step functions is the integral itself.

52 F�(x)	 2x sin(1/x)� cos(1/x) when x� 0, and
F�(0)	 0 from qn 8.22.
Note that F� is not continuous at 0. None the less, F� is integrable
by qn 29, because x sin(1/x) gives a continuous function, which is
necessarily integrable, and cos(1/x) gives an integrable function like
g in qn 44. Thus � �

�
F�	 x� sin(1/x) provided x� 0.

53 When x� 0, F�(x)	 2x sin(1/x�)� (2/x)cos(1/x�), which is
unbounded near x	 0.

F(x)�F(0)

x� 0
	x sin

1

x�
, so � �x � �

F(x)�F(0)

x� 0
� � x � ,

and F�(0)	 0. See qn 8.25(i).

54 (i) By the Mean Value theorem for integrals, qn 45.
(iii) Since F is continuous at x, f (x� �h)� f (x) as h� 0. So

F(x� h)�F(x)

h
� f (x) as h� 0,

and this implies that F�(x)	 f (x).

55 F�(x)	G�(x)	 f (x)� (F�G)�(x)	 0� (F�G)(x)	 constant by
qn 9.17.
� (F�G)(b)	 (F�G)(a)�F(b)�F(a)	G(b)�G(a).
Since (F�G)(x)	 constant, G(x)	F(x)� c.

56 Given 
� 0, there exists � such that

0� (x� a)	 h��� � f (x)� L � � 
 � L � 
 � f (x)� L � 


� L � 
 �
1

h�
���

�

f� L � 
� L � 
 �
F(a� h)�F(a)

h
� L � 
,

so lim

����

F(a� h)�F(a)

h
	 L

using the Mean Value Theorem for integrals, qn 45.

57 ( f · g)�	 f � · g� f · g�, so, since f � · g� f · g� is continuous, the Fundamental
Theorem of Calculus gives [ f · g] 


�
	 � 


�
( f � · g� f · g�)

	 � 

�
f � · g� � 


�
f · g�.

58 � 

�
f 
(x)(b�x)dx	 [ f �(x)(b� x)]


�
� � 


�
f �(x)(�1)dx

	�f �(a)(b� a)� � 

�
f �(x)dx	 �f �(a)(b� a)� f (b)� f (a).

283Answers



59 Apply qn 57 to obtain

�



�

(b� x)� f 
����(x)dx	 [(b�x)� f 
��(x)]

�
��




�

� n(b� x)��� f 
��(x)dx

	�(b� a)� f 
��(a)� n�



�

(b�x)��� f 
��(x)dx.

Question 57 must be applied n times in all.
If f (x)	 sinx, then f �(x)	 cosx	 sin(x��

�
�),

so f 
��(x)	 sin(x��
�
n�).

So �
1

n!�



�

(b�x)� f 
����(x)dx ��
� b � �

n!
� sin(c� �

�
(n� 1)�) ��

� b � �

n!
.

The last term� 0 as n�� from qn 3.74(ii).
So (sin x� partial sum of the first n terms)� 0. So the series tends to sin x.

60 (F � g)�	 (F� � g) · g� 	 ( f � g) · g�. The first equation comes from the
application of the Fundamental Theorem to F�	 f on [g(a), g(b)]. The
second equation comes from the application of the Fundamental theorem
to (F � g)�	 ( f � g) · g� on [a, b].
All four expressions are equal provided g is an injection which follows, for
example, if g� is positive on [a, b].

61 Using the Fundamental Theorem, the integral	�1/b� 1/a. As b��,
integral� 1/a. Compare with qn 3.

62 If I(a)	 � 

�
f exists for a negative and unbounded below, and

lim

����

I(a)	 L

then we write � 

��

f	 L. Same example as qn 61.

63 Integral	 2�b� 2�a. lim

����

(2�b� 2�a)	 2�b.

64 lim

�����

[2�(1�x)]�
�
	 2.

�1�x� 0� 1/�2� 1/�(1�x)� 1� 0� 1/�(1�x�)� 1/�(1�x).

Now I(a)	�
�

�

dx

�(1� x�)
increases as a��1�, but is bounded

above by 2.
Let sup�I(a) � �1� a� 0�	 L, then as a��1�, I(a)� L and

�
�

��

dx

�(1�x�)
	 L.
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65 If I(b)	 � 

�
f and lim


���

I(b)	 L, then we write � �
�
f	 L.

�
�

��

dx

�(�x)
	 [�2�(�x)]�

��
	 �2�(�a)� 2� 2 as a� 0�.

66 [�2�(1�x)]�
�
	�2�(1� a)� 2� 2 as a� 1�.

0�x� 1� 1/�(1� x)� 1� 1/�(1� x�)� 1/�(1�x).

Thus 0��
�

�

dx

�(1�x�)
��

�

�

dx

�(1�x)
for 0� a� 1.

Now I(a)	�
�

�

dx

�(1�x�)
increases as a� 1�, and is bounded above by 2.

So �
�

�

dx

�(1� x�)
exists, as in qn 64.

67 � �
�
f	 1��

�
��

�
��



� . . .� (�1)���/N. This series is convergent by the

alternating series test (qn 5.62) to log 2, by qn 9.41.
� �
�
� f �	 1��

�
��

�
��



� . . .� 1/N. This harmonic series is divergent, qn

5.30.

68 �����
�
���

1

�r
��

���

�

dx

�x
�

���
�
���

1

�r
.

Integral	 2�(n� 1)� 2, using the Fundamental Theorem.

2�(n� 1)� 2�
���
�
���

1

�r
� 2�(n� 1)� 1�

1

(n� 1)
.

Now divide through by �n and obtain the limit 2 on both sides as n��.
See qn 5.59.
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11

Indices and circle functions

For an elegant treatment of exponential and logarithmic functions
starting from the counter-intuitive definition logx	 � �

�
dt/t see Hardy,

or for a presentation of Hardy’s treatment using a problem sequence
see Quadling. For an alternative treatment starting from the definition

exp(x)	 1� x�
x�

2!
�
x�

3!
� . . .

see Burkill.

Exponential and logarithmic functions

Although we have used logarithms and exponentials in this book,
they have not played a formal rôle in defining any of the concepts of
analysis.

We now have the results we need to define these functions and to
establish their properties.

Positive integers as indices



For all x � R, x� 	x and x���	 x�x; n � N.
For x� 0, x�	 1 and x�� 	 1/x�.

1 For m, n � N, prove by induction on n that

(i) x���	x�x�,
(ii) x��	 (x�)�, and
(iii) (xy)�	x�y�.

Properties (i) and (ii) are called the laws of indices though they are
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in fact theorems. It will be necessary to establish that these two laws of
indices still hold as we extend the family of numbers which may be used
as indices.

2 For m, n � N, prove that when x� 1, m� n�x��x�, from order
properties in qn 2.11.
Deduce that, when 0�x� 1, m� n�x��x�.

3 From qn 6.28, show that, for n � N, the function
f: R� � R� given by f (x)	x� is strictly increasing, continuous and
unbounded above.

Positive rationals as indices

4 With f as in qn 3, show that f��: R�� R� exists by the
Intermediate Value Theorem, and is strictly increasing, continuous
and unbounded above.



f��(x) (as in qn 4) is denoted by x���.



For x� 0 and n, m � Z�, x��� 	 (x�)���.

5 (i) For x, y� 0, prove that (xy)���	x���y���.
(ii) By induction on n prove that x���	 (x���)�.
(iii) Show that x����	 (x���)���. Use (ii) and the fact that the

function x� x�� is a bijection of R�.

6 For x� 0 and r, s � Q�, prove the two laws of indices
(i) x���	 x�x� and (ii) x��	 (x�)�. Build on qns 1 and 5.

7 Prove that, when x� 1, and r, s � Q�, r� s� x��x�.
Deduce that, when 0�x� 1, and r, s � Q�, r� s�x�� x�.

Rational numbers as indices



For x� 0 and r � Q�, x�	 1 and x��	 1/x�.

8 For x� 0 and r, s � Q, prove the two laws of indices
(i) x���	 x�x� and (ii) x��	 (x�)�.

9 Prove that, when x� 1, and r, s � Q, r� s�x�� x�.
Deduce that, when 0�x� 1, and r, s � Q, r� s� x��x�.



For a� 1, define A: Q � R� by A(x)	 a�.
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Use computer graphics to examine the graph of A for a	 1.5, 2 and 3.
For qns 10—28, we will always assume that a� 1.

10 Verify from qn 3.57 that (A(1/n))� 1	A(0) as n��. Deduce that
(A(�1/n))� 1	A(0) as n��. Use the fact that A is strictly
increasing, established in qn 9, to show that A is continuous at 0.

11 Prove that A is continuous at q � Q by considering that

A(x)�A(q)	A(q)(a���� 1)� 0 as x� q.

So far we have only given a meaning to rational indices, and found
that for such indices the function x� a� is continuous. Because the
rational numbers are dense on the real line we can complete the
definition of this function on R simply by insisting that it shall be
continuous. Questions 12—18 provide the tools for showing that this
extension may only be done in one way and for finding the derivative
of the resulting function.



Keeping a� 1, define D: Q��0�� R� by

D(x)	
a�� 1

x
.

Use computer graphics to examine the graph of D for a	 1.5, 2 and 3.

12 Why is D continuous where it has been defined?

13 By considering qn 2.50(iii), show that, when m, n � Z�,
m� n�D(m)�D(n). Use the idea of qn 2.50(iv) to deduce that,
when r, s � Q�, r� s�D(r)�D(s).

We proved in qn 4.41(i) that (D(1/n)) is convergent as n� �.



Let (D(1/n))� L(a) as n��.

14 Use the fact that D is strictly increasing for x� 0 to show that

lim
����

D(x)	 L(a).

15 Use the fact that, for non zero x, D(�x)	D(x)/A(x), to show that

lim
����

D(x)	 L(a).

16 How should D(0) be defined so that D is continuous on Q?
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17 Find a positive number M such that

a�� a�

x� y
�M,

provided 0� y� x� c.

Real numbers as indices

18 How does the condition in qn 17 guarantee that A may be
extended in a unique way to a continuous function on [0,�)?

19 How can you be sure that A may also be extended in a unique way
to a continuous function on (��, 0]?
This gives us a continuous function A: R � R�, and at last we have
a well-defined meaning for irrational indices.

20 For a� 1 and x, y � R, prove the two laws of indices

(i) a���	 a�a� and (ii) a��	 (a�)�.

For (ii), first establish the result for y	 n � N, then for y	 1/n, and
then for y	m/n � Q, before attempting y � R.

21 Show that A is strictly increasing on R.

Since A: R � R� is strictly increasing it is a bijection and has a
unique inverse: R�� R called the logarithm to the base a.



A��(x)	 log
�
x.

22 Prove that, when X, Y � 0, log
�
X� log

�
Y 	 log

�
XY.

Deduce that log
�
1/X	 �log

�
X.

23 (i) For x� 0, check that D is continuous at x if and only if A is
continuous at x. See qn 12.

(ii) Use the argument of qn 21 to show that D is strictly
increasing on R�.

(iii) If (x
�
) is a null sequence of positive terms, and q

�
is a rational

number lying between x
�
and 2x

�
, use the fact that

(D(q
�
))� L(a) and (D(�

�
q
�
))� L(a) to prove that

(D(x
�
))� L(a) and deduce that lim

����D(x)	 L(a).
(iv) By an argument like that of qn 15 show that

lim
����D(x)	 L(a).

(v) If D(0)	 L(a), must D be continuous on R?

24 Prove that A�(x)	A(x) ·L(a) for x � R.

289Exponential and logarithmic functions



Natural logarithms

25 From qn 10.6, we know that D(1/n) is an upper sum and D(�1/n) is
a lower sum for � �

�
dx/x.

Deduce that

L(a)	�
�

�

dx

x
, for a� 1.

26 Why must L(a)� 0 as a� 1�, and L(a)� � as a��? Why is L
strictly increasing, continuous and L�(x)	 1/x.

27 Why must there be a number e� 1 such that L(e)	 1? Check that
L(2)� 1, so that 2� e.



When a	 e, write A(x)	E(x)	 exp(x).

28 Prove that E�(x)	E(x). What is the Taylor series for E(x)?

If we now define A for 0� a� 1, we can use the fact that 1� 1/a
to apply the results of qn 10 onwards. With this condition, in the
analogues of qns 10 and 21, A is then strictly decreasing. The analogue
of qn 13 holds for negative integers and negative rationals and the
analogues of qns 14 and 15 transpose the originals. The analogue of qn
16 holds, but for the analogues of qns 17 and 18 an interval [�c, 0]
must be used and the result extended from the negative reals to the
positive reals. The analogues of qns 20, 23 and 24 hold, but for qn 25
have D(�1/n) as an upper sum and D(1/n) as a lower sum; so we get
L(a) as before when 0� a and L(a)��� as a� 0�.

It is trivial to define A(x)	 1 when a	 1, and then L(1)	 0.
Now L is defined on the domain R� and is strictly increasing and

continuous.

29 By differentiating the function f	 L �E, show that L(E(x))	x for
x � R.

30 Since L and E are bijections, E(L(x))	x for x � R�. Deduce that
L(x)	 log

�
x.

The function L is called the natural logarithmic function and is
usually denoted in school texts by ln. When logx is written without an
explicitly named base, in university texts, the logarithm to the base e is
meant. The function A is an exponential function, but when the
exponential function is referred to, it is E that is meant.
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31 Provided that a, b� 0, show that

(i) a�	 (e�	
�)� 	 e� �	
�.
(ii) log a�	x · log a.
(iii) log b	 log

�
b · log a.

Exponential and logarithmic limits

32 (Euler, 1748 and Cauchy, 1821) Use de l’Hôpital’s rule to find the
limit of

log(1� ax)

x
as x� 0�.

Deduce that (n log(1� a/n))� a as n��.
Use the continuity of E to show that ((1� a/n)�)� e� as n� �.

33 Construct an argument similar to that of qn 32 to show that

lim
���

�1�
a

n�
��

	 e�.

34 The function f is defined on R� by f (x)	x� where a is a real
number different from 0. Prove that f �(x)	 a ·x���.

35 Use the ratio test to prove that (n�e��)� 0 as n�� (qn 3.74).
Deduce that x�e��� 0 as x��. Prove that e�/x��� as x� �
and illustrate this with graph drawing facilities on a computer.
Prove that, when a� 0, logx/x�� 0 as x��.

36 Investigate the function given by f (x)	x�, defined for positive x.
Show that f is continuous throughout its domain. Find the
minimum value of f. Show that f is monotonic decreasing on the
domain 0�x� 1/e. Show that ( f (1/n))� 1 as n� �. Deduce that
lim

���� f (x)	 1.

37 What is the Maclaurin series for E(x)? Does it converge to the
value of the function for all values of x?

38 Use the equation

1� (�t)� (�t)�� . . .� (�t)���	
1� (�t)�

1� (�t)
,
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which is valid for all t unless t	�1, and the Fundamental
Theorem of Calculus, to show that

log(1�x)	x�
x�

2
�
x�

3
� . . .� (�1)���

x�

n
� (�1)��

�

�

t�

1� t
dt,

provided �1�x. Check the terms of the Maclaurin expansion
with 1.8(i).
For any positive number K, show that, when �K/(K� 1)� x,

� (�1)��
�

�

t�

1� t
dt �� (K� 1)�

�

�

� t � �dt	
(K� 1) � x � ���

(n� 1)
.

(The introduction of K, and the condition �K/(K� 1)�x is a
device to establish the convergence for negative x, with �1�x.)
Check that this last expression gives a null sequence when � x � � 1
and determine for what values of x the power series developed here
is a valid expansion of log (1� x).

Summary – Exponential and logarithmic functions

Definitions x�	x and x���	x�x for n � N.
Theorem f: R� � R� given by f (x)	x� is a continuous
qns 3,4 bijection and strictly increasing.

f��: R�� R� given by f��(x)	 ��x	 x��� is a
continuous bijection and strictly increasing.

Definition x���	 (x�)���, for m, n � N.
Theorem f: R� � R� given by f (x)	x� for q � Q� is a

qn 7 continuous bijection and strictly increasing.
Definition When x� 0, x�	 1 and x�� 	 1/x� for q � Q.
Theorem When 1� a, A:Q � R� given by A(x)	 a� is

qns 10, 11 continuous and strictly increasing.
When 0� a� 1, A is strictly decreasing.

Theorem
qns 12, 13

D: Q��0�� R given by

D(x)	
a�� 1

x
is continuous.
If 1� a, D is increasing on Q�.
If 0� a� 1, D is increasing on negative Q.

Theorem If c� 0, A: x� a� is uniformly continuous on
qns 17, 18 [0, c]� Q and so may be extended in a unique

way to a continuous function on [0, c] and so
on [0,�).
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Theorem A: x� a� may be extended in a unique way to a
qn 19 continuous bijection R � R�, which is

increasing when 1� a and decreasing when
0� a� 1.

Theorem a���	 a�a� and a��	 (a�)�,
qn 20 when 0� a and x, y � R.

Definition If 0� a and a�	 y, then log
�
y	x.

Theorem For x, y� 0, log
�
x� log

�
y	 log

�
xy.

qn 22
Theorem D: x� (a�� 1)/x may be extended in a unique

qns 14, 15, way to a continuous function on R.
16, 23

Theorem D(x)� � �
�
dy/y as x� 0.

qns 14, 15,
25

Theorem If 0� a and A(x)	 a� then
qns 24, 25 A�(x)	A(x) · � �

�
dy/y.

Definition � �
�
dx/x	 1, E(x)	 e� 	 exp(x).

Theorems E�(x)	E(x), E(� �
�
dx/x)	 a, � �

�
dx/x	 log

�
a.

qns 28, 29, 30
Definition logx	 log

�
x

Theorem When a� 0, a�	 e� �	
�; log a�	x log a.
qn 31

Theorem
qn 32 lim

���
�1�

a

n�
�
	 e�.

Circular or trigonometric functions

The origins of the functions sine, cosine, tangent, cotangent, secant
and cosecant are geometric. A particle, P, moves around the
circumference of a circle with centre O and radius 1. The angle through
which the radius turns is the length of arc which is traced out by P on
the circumference. If the particle moves anti-clockwise from the point A
to the point B, and the arc length from A to B is x, then the
perpendicular from B to OA has length ‘sine of x’. The cosine of x is the
sine of the complementary angle. The tangent of x is the length along
the tangent at B from B to the point where it meets OA produced. The
cotangent of x is the tangent of the complementary angle.

If we only have the established properties of the real numbers, how
do we define these functions? If logic was all that mattered, we could
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O A

x1

B

tan x

cos x

cot x

sin x

Figure 11.1

ignore the geometric origins of the functions and define sine and cosine
by their power series: this is the procedure adopted by Burkill. It is also
possible to define the sine function by an infinite product or to develop
the circular functions from the definition

arctanx	�
�

�

dt

1� t�
:

this is the procedure adopted by Hardy.
But if the geometric origins of these functions are to be respected

we must develop a formal definition of angle either from the notion of
the area of a sector of a unit circle (the procedure adopted by Spivak)
or from a formal definition of arc length. This is what is done in qns
39—48. You may, if you wish, skip to the definition of circular arc
length following qn 48 and explore the intervening problems when your
curiosity is aroused.

Length of a line segment

39 Give an algebraic formula for the non-negative function
f: [�1, 1]� R whose graph will appear as a semicircle with centre
at the origin and radius 1.
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40 If the distance between two points (x, y) and (a, b) is defined to be
�((x� a)�� (y� b)�), show that this distance

� � x� a � � � y� b � .

What is the distance between the two points (a, f (a)) and (b, f (b))?

41 Why is the function f, of qn 39, continuous on [�1, 1] and
differentiable on (�1, 1)?

42 Apply the Mean Value Theorem to f to show that the distance
between the points of qn 40 is equal to

b� a

�(1� c�)

for some c with �1� a� c� b� 1.

Arc length

43 For any subdivision a	x
�
�x

�
�x

�
� . . .� x

�
	 b, show that the

polygonal arc length of the function f on [a, b], defined by

���
�
���

�((x
�
�x

���
)�� ( f (x

�
)� f (x

���
))�)

can only increase if an additional point, or finite set of points, is
added to the subdivision. Use qn 2.64, the triangle inequality in the
plane.

44 Use qn 40 to show that any polygonal arc length for all or part of
the function of qn 39 is less than or equal to 4.
Deduce that the polygonal arc length of this function has a
supremum. The supremum for polygonal arc length on the interval
[a, b] is called the arc length of the function on [a, b].

45 By applying qn 42, show that any polygonal arc length on the
interval [a, b] for the function of qn 39 has the value

���
�
���

x
�
� x

���
�(1� c�

�
)
,

with x
�
as in qn 43, for some c

�
s, with x

���
� c

�
� x

�
.

46 If we define the function g: (�1, 1)� R by

g(x)	
1

�(1�x�)

show that any polygonal arc length on the interval [a, b] for the
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function f of qn 39 is greater than a lower sum for the function g
on the interval [a, b], and less than an upper sum for this function
provided �1� a� b� 1. Use qn 10.39.
Deduce that the lower integral � 


�
g� arc length on [a, b].

47 Let �1� a	 x
�
�x

�
�x

�
� . . .�x

�
	 b� 1 and

a	 y
�
� y

�
� y

�
� . . .� y

�
	 b be two subdivisions of the interval

[a, b], and let the union of these two subdivisions be
a	 z

�
� z

�
� z

�
� . . .� z

�
	 b.

Use qn 43 to show that
the polygonal arc length of f with the ‘x’ subdivision

� the polygonal arc length of f with the ‘z’ subdivision.

Explain why
the upper sum for g on the ‘y’ subdivision

� the upper sum for g on the ‘z’ subdivision.
Deduce from qn 46 that
any polygonal arc length of f on [a, b]

� any upper sum for g on [a, b].

Deduce that the arc length on [a, b]� the upper integral � 

�
g.

48 From qns 46 and 47 and the definition of the Riemann integral we
know that the arc length of f on [a,b] is equal to � 


�
g.

Use qn 10.64 and 10.66 to show that the integral exists as an
improper integral even when a	 �1 or b	 1 or both.

Arc cosine

We now define an angle function (or arc length function)
A: [�1, 1]� R by

A(y)	�
�

�

dx

�(1�x�)
.

49 Say why the function A is

(i) continuous,
(ii) monotonic decreasing,

(iii) differentiable on (�1, 1) with A�(y)	
�1

�(1� y�)
.

50 Say why

(i) A(1)	 0,
(ii) A(�1)	 2A(0).
(iii) A is a bijection [�1, 1]� [0,A(�1)].

296 11 Indices and circle functions



The function A is usually called arccos, and sometimes cos��. We
may now define A(�1)	� and A�� as the cosine function, so that
cosine is a continuous and monotonic decreasing bijection with domain
[0,�] and range [�1, 1]. On the same domain we define the sine
function by

sinx	�(1� cos�x).

Cosine and sine

51 Find the values of cosx and sinx when x	 0, �
�
� and �.

52 Use the equation A(cosx)	x to prove that cos�x	�sinx for
0�x��. Use the definition of sine to prove that sin�x	 cos x for
0�x��.

53 Sketch the graphs of cosine and sine on the domain [0,�]. For
��x� 2�, define cos x	 cos(2��x) and sinx	�sin(2�� x).
Sketch the graphs of cosine and sine on the domain [0, 2�].
Verify that sin�x� cos�x	 1 on [0, 2�], and that cos�x	�sinx
on (�, 2�).

54 Prove that cos� �	�sin� 	 0, by applying the Mean Value
Theorem to (cosx� cos�)/(x��), so that cos�x	 �sinx on
(0, 2�). Prove likewise that sin� �	 cos� 	�1.

For any integer k, we now define sine and cosine for
2k��x� 2(k� 1)� by

cosx	 cos(x� 2k�) and
sinx	 sin(x� 2k�).

55 Prove that sin�x� cos�x	 1 for all real x.
Prove that cos�x	�sinx and sin�x	 cosx, except possibly when
x	 2k�.
Use the method of qn 54 to prove that cos� 0	�sin 0	 0 and
sin� 0	 cos 0	 1, so that the formulae for the derived functions
hold for all values of x.

56 Define f (x)	 sin(a� x) · cosx� cos(a�x) · sinx. Prove that
f �(x)	 0 for all x. Use the Mean Value Theorem to prove that
f (x)	 sin a. Deduce the formula for sin (x� y).

57 Use the method of qn 56 to prove that
cos (x� y)	 cosx · cos y� sinx · sin y.

58 Prove that cos 2x	 cos�x� sin�x
	 2 cos� x� 1
	 1� 2 sin�x.

Prove also that sin 2x	 2 sin x · cosx.
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Tangent

59 Define tan x	 sinx/cos x, except where x	 (k��
�
)�, and prove

that tan�x	 1/cos�x	 tan�x� 1. Show that the tangent function
is a monotonic increasing bijection (��

�
�, �

�
�)� R.

60 Define arctan: R � (��
�
�, �

�
�) as the function inverse to tan, so that

arctan (tanx)	x. Explain why arctan is differentiable and why
arctan�x	 1/(1�x�).

61 Use the equation

1� (�t�)� (�t�)�� . . .� (�t�)���	
1� (�t�)�

1� (�t�)
,

which is valid for all t, and the Fundamental Theorem of Calculus,
to show that

arctanx	 x�
x�

3
�
x�

5
� . . .� (�1)���

x����

2n� 1
� (�1)��

�

�

t��

1� t�
dt.

Check the terms of this Maclaurin expansion with 1.8(ii).
Prove that

� (�1)��
�

�

t��

1� t�
dt ���

�

�

� t � �� dt	
� x � ����

2n� 1
.

Check that this last expression gives a null sequence when � x � � 1
and determine for what values of x the power series developed here
is a valid expansion of arctanx.

62 Prove that

�


�	 1�

1

3
�

1

5
�

1

7
� . . .� (�1)���

1

2n� 1
� . . .

Summary – Circular or trigonometric functions

Theorem The arc length on the unit circle from (1, 0) to
qn 48 (x,�(1�x�)), �1� x� 1,

A(x)	�
�

�

dy

�(1� y�)
.

Theorem The function A: [�1, 1]� [0,A(�1)] is
continuous, decreasing andqn 49

A�(x)	
�1

�(1�x�)
on (�1, 1).
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qn 50 A(�1)	 2A(0).
Definition A(�1)	�. A��	 cosine.
Theorem cos: [0, �]� [�1, 1]

qn 51 cos 0	 1, cos �
�
� 	 0, cos� 	�1.

Definition sinx	�(1� cos�x) on [0,�].
cosx	 cos(2��x) on (�, 2�].
sinx	�sin(2�� x) on (�, 2�].
cosx	 cos(x� 2k�) on [2k�, 2(k� 1)�].
sinx	 sin(x� 2k�) on [2k�, 2(k� 1)�].

Theorem sin 0	 0, sin �
�
� 	 1, sin� 	 0.

qns 52, 55, cos�x	�sinx, sin�x	 cosx.
56, 57 sin�x� cos� x	 1.

sin(x� y)	 sinx · cos y� cosx · sin y.
cos(x� y)	 cos x · cos y� sinx · sin y.

Definition tanx	 sinx/cosx provided x� (k� �
�
)�.

Theorem tan�x	 1� tan�x.
qn 59 tan: (��

�
�, �

�
�)� R is a continuous bijection and

strictly increasing.

Historical note

In 1614, John Napier published tables matching 10�(1� 10��)� with
n, for n	 0, 1, 2, . . ., 100 and for a host of larger n, interpolating to build
up a table of log sines to seven significant figures. Such ‘logarithms’
matching the terms of a geometric progression with those of an
arithmetic progression, satisfy log a� log b	 log c� log d� ab	 cd,
and provide some of the advantages of modern logarithms for
computational purposes. Napier’s achievement was the more
remarkable when one realises that neither the notion nor the notation
of exponents was developed until some 20 years later. Briggs had
discussions with Napier and then constructed tables (of common
logarithms) in which log 1 was 0 and log 10 was 1. These tables were
first published in 1617.

In 1647, work by Gregory of St Vincent on the hyperbola showed
that a geometric progression along one asymptote produced strips
parallel to the other asymptote whose areas were equal. In 1649,
Anthony de Sarasa claimed that this relationship was logarithmic.

In his De Analysi (written in 1669 and circulated among friends, but
not published until 1734) Newton had used term-by-term integration of
the series for 1/(1�x) (which he obtained by long division) to find the
series for log(1�x), and then developed a method of repeated
successive approximations to calculate the inverse function of a power
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series. This enabled him to construct the series for exp(x)� 1. Newton
did not use the terminology of logarithms or exponentials. In 1668
Mercator published the series for log(1�x) in his Logarithmotechnia
and referred to areas under the rectangular hyperbola as natural
logarithms. Leibniz described the integral � dx/x as a logarithm in 1676.

Negative and fractional exponents were first proposed by Wallis in
1656 and first used by Newton in his discussion of the Binomial
Theorem in 1669. The first overt claim of the connection between
exponents and logarithms was made by Wallis in 1685 in relation to
the terms of a geometric progression.

The first claim that the common logarithm of x was the power to
which 10 had to be raised to obtain x was made in tables published in
England in 1742. In Euler’s Introductio in Analysin Infinitorum
published in 1748, he explicitly defined log

�
x	 y where a�	x. He used

infinitesimals and infinite numbers to great effect. For an infinitesimal 
,
he let (a
 � 1)/
 	 k (which depends on a) and called the value of a
which makes k	 1, e (the first letter of his name). By combining
infinitesimal and infinite numbers 
N	x, he obtained a� as the
exponential series exp(kx). The conventional exponential series follows.
The original equation giving k, was rearranged to give (1�x/N)�	 e�.
Further ingenious manipulation led to the result that

log
�
x	 (N/k)(x���� 1),

and he then used the binomial series to obtain the series for log(1�x).
In 1821, Cauchy, presuming that a� was well defined, proved that

every continuous function f satisfying

f (x) · f (y)	 f (x� y)

was of the form f (x)	 a� for some a. He used the Cauchy product to
show that the exponential power series belonged to this family of
functions, and defining e	� 1/n! had thereby proved that the
exponential power series was equal to e�. Cauchy also used the
Binomial Theorem to prove that, as a� 0, (1� ax)���� e�. In 1881, A.
Harnack defined a� for rational x and extended his definition to
irrational x by affirming the continuity of the new function.

In order to extend exponentials to complex numbers, Euler (1748)
had defined exp(z) by means of the exponential series 1� z� z�/2!� . . .
and in the late nineteenth century it was recognised that, if this
definition was used for a real variable, a formal definition of a� as
exp(x log a) avoids some of the difficulties with which Cauchy had
struggled.

Newton’s discovery of the sine series depended on his previous
discovery of the Binomial Theorem for rational index. He derived the
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series for arcsine from the term-by-term integration of the power series
for �(1�x�) and the used his repeated approximation method to
construct the series for sinx. This method is based on the formula �

�
r��

for the area of a circular sector and appears in Newton’s notes from
1666. In De Analysi Newton’s method for these series was based on a
calculation of arc length, which is closely related to the treatment in
this chapter. Again, it was Euler who recognised that an extension of
the trigonometric functions to complex variables required a formal
definition of these functions by series, and he obtained the equation
e��	 cosx� i sinx in 1748.

In 1821, Cauchy proved that a continuous solution of the
functional equation f (x� y)� f (x� y)	 2f (x) f (y) must take the form
cos ax or cosh ax with the cosine occurring when f (x)� 1 for some x.

In the late nineteenth ventury it was recognised that, if Weierstrass’
arithmetisation of analysis was to be carried through, a non-geometric
definition of these functions was required for real variables. In 1880
Thomae gave an analytic definition of cosine using Cauchy’s equation
above. The series definition (as for complex variables) was also available
for this purpose, and the alternative definition with an integral (which
we have used) was commended by Felix Klein in 1908.
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Answers

1 (i) The definition gives the basis for the induction.
Then x�����	 x���x	 x�x�x	 x�x���.

(ii) The definition gives the basis for the induction.
x�
����	x����	 x��x�	 (x�)�x�	 (x�)
����.

(iii) (xy)���	 (xy)�(xy)	 x�y�xy	 x�xy�y	 x���y���.

2 m� n� 0� n�m� 1� x���� x� �x� � 1/x�� 1/x�.

3 See qn 2.20 for strict increase, qn 6.28 for continuity. 1� x� x� shows
unboundedness above.

4 See qn 7.27, continuity of nth root function.

5 (i) Use 1(iii) and the fact that x� x� is a bijection.
(ii) (x���)
����	 (x���)�x���	 (x���)x���

(x���)
����	 (x�)���x���	 (x�x)���	 (x���)���.

6 Let r	 p/m and s	 q/n, where m, n, p, q � Z�.

(i) x���	 x
���������	 (x����)
������	 (x����)��(x����)��
	x�����x�����	x�x�

(ii) x��	x�����	 (x��)����	 (x���)���, using qn 5(ii) and 5(iii).

7 r� s� 0� s� r� 1� x���� x�� x�� 1/x�� 1/x�. Use 3.57 and 2.23,
reciprocal inequalities.

8 The argument of qn 6 applies. For negative r and s, work with
reciprocals.

9 The argument of qn 7 applies.

10 A(�x)	 1/A(x). For some N, m�N� �A(�1/m)� 1 �� 
, and
because A is strictly increasing, �1/(N� 1)� x� 1/(N� 1)�
�A(x)� 1 �� 
. Thus A(x)� 1	A(0) as x� 0.

11 x� q� x� q� 0�A(x� q)� 1�A(x� q)� 1� 0
�A(x)�A(q)� 0�A(x)�A(q).

12 By qns 6.23, continuity of sums of functions, and 6.54, continuity of
quotients of functions.

13 Let r	 p/m and s	 q/n, where m, n, p, q � Z�.
r� s� pn� qm�D(pn)�D(qm). Now put b	 a��, and we get
D(r)�D(s) but with b for a in the definition of D.

14 If m�N� �D(1/m)� L(a) � � 
, then because D is strictly increasing on
Q�, 0� x� 1/(N� 1)� �D(x)� L(a) �� 
.

15 Apply qn 6.93, the algebra of limits, from above.
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16 D(0)	 L(a) by qn 6.89, the neighbourhood definition of continuity.

17 Expression	A(y)D(x� y)�A(c) ·D(c)	M, since both A and D are
strictly increasing on Q���0�.

18 A is uniformly continuous on Q � [0, c] by qn 7.42, the Lipschitz
condition, and therefore may be extended to a continuous function in a
unique way by qn 7.47. This extension may be made at any point
x� 0 by selecting c� x.

19 A(�x)	 1/A(x). Since A(x)� 0 for all x, the continuity of A at x is
equivalent to the continuity of A at �x from qn. 6.52.

20 If x and y are rational numbers, these results were obtained in qn 8.
Let (x

�
) be a sequence of rational numbers tending to x (possibly

irrational) and let (y
�
) be a sequence of rational numbers tending to y

(also possibly irrational), then (x
�
� y

�
)� x� y and (x

�
y
�
)� xy by qn

3.54 (iii) and (vi). By the continuity of A, (A(x
�
))�A(x), (A(y

�
))�A(y),

(A(x
�
� y

�
))�A(x� y), (A(xy

�
))�A(xy) and, by qn 8,

A(x
�
� y

�
)	A(x

�
) ·A(y

�
), so by qn 3.54(vi), the product rule,

A(x� y)	A(x) ·A(y). So we have the first law. For the second law,
first establish that it holds for y	 n � N by induction. Then establish
that it holds for y	 1/n using the bijection of qn 4. Consider a product
of n terms each equal to a���. Then establish that it holds for y	m/n, a
positive rational, using the two previous cases and extend this to
negative rational y from the definitions. We now have the equipment
to claim that A(xy

�
)	 (A(x))�

�
. Now (A(xy

�
))�A(xy) as we saw before

and ((A(x))�
�
)� (A(x))�, by the continuity of A, substituting a� for a. So

A(xy)	 (A(x))�.

21 We know that A is strictly increasing on Q and that A is continuous
on R.
If (p

�
) is an increasing sequence of rationals tending to an irrational r,

then by the continuity of A, (A(p
�
))�A(r), and since A is increasing,

(A(p
�
)) is increasing, so by qn 4.66, A(r)	 sup�A(p

�
) � n �N�, and since

every rational p� r can belong to a possible (p
�
) sequence,

A(r)	 sup�A(p) � p � Q, p� r�. Likewise A(r)	 inf�A(q) � q � Q, r� q�.
If p, q � Q and p� r� q, then A(p)�A(r)�A(q). Further, for any two
distinct real numbers r and s, with r� s, there exists a rational number
q such that r� q� s, and so A(r)�A(q)�A(s), and A is strictly
increasing on R.

22 Since A is a bijection R � R�, there is a unique x such that A(x)	X
and a unique y such that A(y)	 Y. From qn 20(i), A(x� y)	XY, so
A��(XY)	 x� y, and log

�
XY 	 log

�
X� log

�
Y.

23 (iii) 0� �
�
q
�
� x

�
� q

�
, and D strictly increasing, implies

D(�
�
q
�
)�D(x

�
)�D(q

�
). From qn 14, (D(�

�
q
�
))� L(a) and
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(D(q
�
))� L(a). The result comes from qn 3.54(viii), the squeeze

rule.
(v) From (i) and qn 6.89, continuity by limits.

24 (A(x�)�A(x))/(x�� x)	A(x) ·D(x�� x)�A(x) ·L(a) as x�� x.

25 Both (D(1/n)) and (D(�1/n))� L(a) as n��.

26 0� L(a)� a� 1, so L(a)� 0 as a� 1�.

For a� 2, L(a)�
�����
�
���

1

n
� � as a� �, by qn 5.30, the harmonic

series.

L is strictly increasing because x� 0� 1/x� 0.
L is continuous by qn 10.50, the continuity of integrals. L�(x)	 1/x by
the Fundamental Theorem of Calculus.

27 Since L is continuous and takes values from small positive to large
positive on (1,�), L takes the value 1 by the Intermediate Value
Theorem for some value of a in this domain. On (1, 2), 1/x� 1, so
L(2)� 1.

28 Follows from L(e)	 1 and qn 24. Taylor series from qn 9.38.

29 f �(x)	 L�(E(x)) ·E�(x)	 (1/E(x)) ·E(x)	 1. Thus f (x)	 x� c. But
f (0)	 0, so c	 0.

30 Since E	 L��, E(L(x))	x, and L(x)	 log
�
x.

31 (i) First equality by definition of log. Second equality from second
law of indices.

(ii) The logarithm of the equality in (i). Use qn 29.
(iii) E(logb)	 b. E(log

�
b · log a)	A(log

�
b) by (i), 	b by definition.

32 The function is well defined provided �x �� � 1/a � .

Limit	 lim

����

a

1� ax
	 a. Then consider x	 1/n.

34 f (x)	E(a logx). f �(x)	E�(a logx) · (a/x)	 f (x)(a/x).

35 Let f (x)	 x�e��. f (n� 1)/ f (n)	 (1� 1/n)�/e� 1/e as n� �. By qn
3.71, d’Alembert, ( f (n))� 0 as n��.
f �(x)	 f (x)(a/x� 1)� 0 when x� a. So f is strictly decreasing when
x� a. Since the sequence� 0, the function� 0 as x��. So
1/f (x)� �.

Let g(x)	 (logx)/x�, then g�(x)	
1� a log x

x���
� 0 when x� e���.

Let h(n)	 g(e�), then h(n� 1)/h(n)	 (1� 1/n)/e�� 1/e� as n� �. So,
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by qn 3.71, (h(n))� 0 and since g is strictly decreasing, g(x)� 0 as
x� �.

36 f (x)	E(x logx). f is continuous since log and E are continuous.
f �(x)	E�(x log x) · (logx� x · 1/x)	 0 when logx	 �1 or x	 1/e. On
(0, 1/e), f �(x)� 0. f (1/n)	 ��(1/n)	 1/ ��n� 1 by qn 3.59. Since f is
strictly decreasing on this domain, f (x)� 1 as x� 0�. Minimum is
f (1/e).

37 See qn 9.38.

38 Use qn 10.60 (integration by substitution) to show that

�
���

�

dt

t
	�

�

�

dt

1� t
.

�
�

�

1� (�t)� . . .� (�t)���dt	�
�

�

dt

1� (�t)
��

�

�

(�t)�dt

1� (�t)
.

�K/(K� 1)� t� 1/(K� 1)� t� 1� 1/(t� 1)�K� 1

� � t � �/(t� 1)� � t � �(K� 1).

Also
(K� 1) � x � �
n� 1

�
K� 1

n� 1
if �x � � 1.

But K is constant, so ((K� 1)/(n� 1))� 0 as n��.
Expansion is valid when �1�x� 1.

39 f (x)	�(1� x�).

40 Squaring both sides of the inequality makes the comparison trivial.
�((a� b)�� ( f (a)� f (b))�).

41 f is continuous by qns 6.29, the continuity of polynomials, 7.27, the
continuity of root functions, and 6.40, the continuity of composite
functions.
f �(x)	 �x/�(1� x�) on (�1, 1).

42 f (b)� f (a)	 f �(c) · (b� a), so

�((b� a)�� ( f (b)� f (a))�)	 (b� a)�(1� ( f �(c))�)

�((b� a)�� ( f (b)� f (a))�)	
b� a

�(1� c�)
.

43 Adding a point to the subdivision replaces one part of the polygonal
arc length by two new ones using the original end points, this increases
the polygonal arc length by the triangle inequality.

44 On [�1, 0] f is strictly increasing, so the polynomial arc length
�� �x

�
� x

���
�� � � f (x

�
)� f (x

���
) �� 1� 1.
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Likewise on [0, 1] f is strictly decreasing and again the polygonal arc
length is bounded above by 2. So all polygonal arc lengths, by qn 43,
are bounded above by 4.

46 The function g is bounded on [a, b] and so integrable. Working on the
subdivision �1� a	 x

�
�x

�
� x

�
� . . .�x

�
	 b� 1 and letting

m
�
	 inf�g(x) � x

���
�x� x

�
�, and

M
�
	 sup�g(x) �x

���
� x� x

�
�,

from qn 45, �m
�
(x

�
� x

���
)� polygonal arc length of f for this

subdivision� �M
�
(x

�
�x

���
).

So sup (lower sums)� sup (polygonal arc lengths)	 arc length.
So lower integral of g on [a, b]� arc length of f on [a, b].

47 The z-subdivision is the same as the x-subdivision but with some
additional intervening points. The additional points increase the
polygonal arc length by qn 43.
The z-subdivision is the same as the y-subdivision but with some
additional intervening points, so if y

���
	 z

�
, then y

�
	 z

���
for some p,

so [z
���

, z
�
]� [y

���
, y

�
] for s	 k� 1, . . ., k� p.

So sup�g(x) � z
���

�x� z
�
�� sup�g(x) � y

���
�x� y

�
�

for s	 k� 1, . . ., k� p.
Polygonal arc length on x-subdivision

�polygonal arc length on z-subdivision
�upper sum on z-subdivision (using qn 45)
�upper sum on y-subdivision.

so every polygonal arc length� every upper sum.
So sup (polygonal arc lengths)� every upper sum.
So arc length is a lower bound to the upper sums.
So arc length� inf (upper sums)	 upper integral.

48 Lower integral� arc length�upper integral (from qns 46 and 47). But
g is bounded and continuous on [a, b], so g is integrable on [a, b], and
its upper integral and lower integral are equal. So arc length	 integral.

49 (i) A is continuous by qn 10.50, the continuity of integrals.
(ii) If �1� t� s� 1, then A(s)�A(t)	 � �

�
� � �

�
	 � �

�
	 �� �

�
� 0.

(iii) A is differentiable by the Fundamental theorem, qn 10.54.

50 (i) By qn 10.48, definition.

(ii) A(0)	�
�

�

dx

�(1� x�)
.

Putting u	 �x,

�
�

��

dx

�(1� x�)
	�

�

�

�du

�(1� u�)
	A(0).
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(iii) A is monotonic decreasing and so a bijection. Domain is given.
The range is bounded by the values of the function at the
extremities of the domain.

51 A(1)	 0, so cos 0	 1 and sin 0	 0.
A(�1)	 �, so cos� 	�1 and sin �	 0.
A(0)	�

�
A(�1)	 �

�
�, so cos �

�
� 	 0 and sin �

�
�	 1.

52 A(cosx)	 x and cos is differentiable by 8.42, inverse functions.
By qn 8.40, A�(cosx) · cos�x	 1, so (�1/�(1� cos�x)) · cos�x	 1.
cos�x	 �sinx.

sinx	�(1� cos�x), so sin�x	
�
�
(�2 cosx)(�sinx)

�(1� cos�x)
	

cosx · sinx

sin x
.

53 L 	 sup� f (x) � a�x� b�.

54 The function cos is continuous on [0,�] and differentiable on (0, �) so
we may apply the Mean Value Theorem and get

cosx� cos�
x� �

	 cos� c	�sin c for some c, x� c� �.

As x� �, c� �, so �sin c� 0 and cos� �	 0.
So we have cos�x	 �sinx on (0, 2�).
Similarly sin� � 	 cos �	 �1.

56 f �(x)	�cos(a� x) cosx� sin(a�x) sinx
� sin(a� x) sinx� cos(a�x) cosx

	 0.

From qn 9.17, f is constant. But f (0)	 sin a. Now put x� y	 a to obtain
sin(x� y)	 sinx · cos y� cosx · sin y.

58 Apply qns 56 and 57 putting y	x, and use sin�x� cos�x	 1.

59 tan�x	
cosx · sin�x� sin x · cos� x

cos� x
	

cos�x� sin�x

cos�x
	 1� tan�x.

The tan function is continuous on (��
�
�, �

�
�) and has positive derivative and

is therefore strictly increasing, and so a bijection.
As x� �

�
��, cosx� 0, so 1/cosx���; also sinx� 1, so tanx� �.

Similarly as x���
�
��, tanx� ��.

60 arctan is differentiable by qn 8.42, inverse functions.

arctan(tanx)	x� arctan�(tanx) tan�x	 1� arctan�(tanx)	
1

1� tan�x

307Answers



61 Power series valid for �1	x� 1.

62 Put x	 1 in the series.
Let arctan 1	X, then tanX	 1, so sinX	 cosX and cos 2X	 0 from qn
58. Thus 2X	 �

�
� and X	�



�.
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12

Sequences of functions

For this chapter, more than any other, the availability of a
computer-assisted graph drawing package is essential, and the
preliminary exercise (i)—(x) is dependent on this

Concurrent reading: Burkill and Burkill ch. 5, Spivak ch. 23.
Further reading: Rudin ch. 7.

Sequences of functions are often considered in a second course of
analysis. The difficulties encountered are not like those in earlier
analysis since the apparatus of limits has already been developed.
Difficulties arise from having two variables of unsymmetric status and
having to think of keeping one constant and letting the other vary
according to context. Before starting the questions in this chapter it is
necessary to have some intuitive feel for the subject matter, and to have
observed, in graphical form, how a sequence of functions may behave.
To do this, use graph drawing facilities on a computer to illustrate the
functions f

�
for n	 1, 2, 5 and 10, where

(i) f
�
(x)	x� 1/n,

(ii) f
�
(x)	x/n,

(iii) f
�
(x)	

nx

x� n
for x � R�,

(vi) f
�
(x)	

1

x�� n�
,

(v) f
�
(x)	

1

1� n�x�
,

(vi) f
�
(x)	

nx

1� n�x�
,

(vii) f
�
(x)	

x

1� n�x�
,
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(viii) f
�
(x)	

1

(1�x�)�
,

(ix) f
�
(x)	x�

(x) f
�
(x)	

x�

1� x��
.

The first thing to look for in these graphs, are the values of x for which
the sequence of real numbers ( f

�
(x)) is convergent. One does this by

thinking of x as constant and letting n��. Having obtained a limit
function f in this way, one then compares the graphs of f

�
and f as a

whole, looking for their greatest distance apart and thinking of n as
constant.

Pointwise limit functions

1 Sketch the graphs of the functions given by

f
�
(x)	

1

1�x�
, f

�
(x)	

1

4�x�
, and f

�
(x)	

1

9� x�
,

superimposing the diagrams on the same axes, using appropriate
computer software.

For a constant real number x, find lim
���

1

n� �x�
.

Because this limit is well defined for each real number x, we have a
limit function f: R � R for the sequence of functions ( f

�
) defined by

f
�
(x)	

1

n�� x�
.

The limit function in this case is given by f (x)	 0, for all x.

2 Sketch the graphs of the functions given by

f
�
(x)	 (sinx)/n, for n	 1, 2 and 3,

using computer software.
Is the limit lim

���
sinx/n well defined, for each real number x?

Since lim
���

f
�
(x)	 0 for all x in this case, the function f defined by

f (x)	 0 is the limit function for the sequence ( f
�
).

In qns 1 and 2, the limit functions were constant giving the same
value for each x. In qns 3, 4 and 5, the values of the limit are not the
same for all values of x.
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3 If f
�
(x)	

1

1� n�x�
,

find the limit function for the sequence ( f
�
) on the domain R.

4 If f
�
(x)	x�, find the limit function for the sequence ( f

�
) on the

domain [0, 1].

5 If f
�
(x)	

x�� 1

x�� 1
,

find the limit function for the sequence ( f
�
) on the domain [0,�).

Because these limit functions are determined point by point for
each x of the domain of the functions, they are called pointwise limit
functions.

A formal definition runs like this: if a sequence of real functions ( f
�
),

f
�
: A� R, have the same domain A and, for each x �A, the limit

lim
���

f
�
(x) exists, then a function f: A� R may be defined by

f (x)	 lim
���

f
�
(x).

This f is the pointwise limit function for the sequence ( f
�
). It is important

to stress that pointwise limit functions are found by keeping x constant
and letting n� �.

It is somewhat disconcerting to find that even though the functions
in the sequence are continuous it is possible for the pointwise limit
function to be discontinuous.

This chapter investigates the context in which a property which is
common to all the functions of a sequence is retained by the limit
function. The possibility that continuity may be lost in the limit shows
how significant this question can be. We will distinguish carefully
between the cases where the pointwise limit function is continuous, and
the cases where it is not.

6 In each of qns 1, 2, 3, 4 and 5, attempt to find a value of x such
that

(i) � f
��

(x)� f (x) � � �
�
,

(ii) � f
���

(x)� f (x) �� �
�
.

7 Continuing the investigation started in qn 6, show that, for the
functions of qn 1,

� f
�
(x)� f (x) �� 1/n� for all x in the domain.
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8 Show that, for the functions of qn 2,

� f
�
(x)� f (x) � � 1/n for all x in the domain.

9 For the functions of qn 3, find values of x for which

� f
�
(x)� f (x) � � �

�
.

10 For the functions of qn 4, find values of x for which

� ·f
�
(x)� f (x) �� 0.99.

11 For the functions of qn 5, find values for x for which

� f
�
(x)� f (x) � � �

�
.

One way of distinguishing between the cases in qns 1 and 2 on the
one hand and qns 3, 4 and 5 on the other is to imagine the graph of
the pointwise limit functions f as an arm onto which sleeves of various
diameters are pulled. In qns 1 and 2, however narrow the sleeves get
the sequence of functions is eventually wholly within them. But in qns
3, 4 and 5 there are sleeves which the functions in the sequence never
get wholly inside.

12 For the functions in qn 3, find
sup� � f

�
(x)� f (x) � : x � R�.

13 For the functions in qn 4, find
sup� � f

�
(x)� f (x) � : x � [0, 1]�.

14 For the functions in qn 5, find
sup� � f

�
(x)� f (x) � : x � [0,�)�.

Uniform convergence

When a sequence of functions, ( f
�
), with each f

�
: A� R, has a

pointwise limit function f: A� R, and, for any 
� 0, the graphs of the
functions f

�
are eventually inside a sleeve of radius 
 about the graph of

the limit function f, then, for sufficiently large n,

f (x)� 
� f
�
(x)� f (x)� 
 for all values of x.

In this case we say that the sequence ( f
�
) converges uniformly to f.

[Think of a large fixed n, and check on the sleeve property by letting x
vary right across the domain.]
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We can also express the uniform convergence of ( fn) to f by saying
that

(sup� � fn(x)� f (x) � : x �A�)� 0 as n���,

or by saying that, given 
� 0, there exists an N such that

n�N� sup� � fn(x)� f (x) � : x �A� �

.

15 Use qns 7 and 8 to prove that the sequences of functions ( f
�
) in qns

1 and 2 converge uniformly to their respective pointwise limit
functions f.

16 Use qns 12, 13 and 14 to prove that the sequences of functions ( f
�
)

in qns 3, 4 and 5 do not converge uniformly to their respective
pointwise limit functions.

17 The convergence of a sequence of functions, uniform or otherwise,
may depend on the domain of those functions.
Examine the convergence of the sequence of functions given by
f
�
(x)	x/n
(i) on the domain [�a, a],
(ii) on the domain R.

18 Examine the convergence of the sequence of functions in qn 4
(i) on the domain [0, a], where 0� a� 1, and
(ii) on the domain [0, 1).

19 The convergence of a seemingly well-behaved sequence of functions
may fail to be uniform.
Examine the convergence of the sequence of functions given by
f
�
(x)	 nx/(1� n�x�) on the domain R.

Draw the graphs of f
�
for n	 1, 2, 3, 5, 10.

This particular example is a useful corrective to a wrong impression
that might be gleaned from qns 1, 2, 3, 4 and 5. For in those questions
there was uniform convergence to constant functions, and non-uniform
convergence to non-constant functions. Question 19 shows that this
coincidence was accidental.

Uniform convergence and continuity

Having defined uniform convergence with the intention of giving a
condition that would make a sequence of continuous functions
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converge to a continuous limit, we need to see whether the condition
we have given is sufficient to guarantee this in every case.

20 We suppose that the sequence of functions ( f
�
) converges uniformly

to the function f and that each of the functions f
�
is continuous on

its domain A. We seek to prove that f is continuous on A or, in
other words, that, for each a �A, lim

���
f (x)	 f (a).

Or, again, given 
� 0, there exists a � such that
�x� a ���� � f (x)� f (a) �� 
.
We break down f (x)� f (a) into manageable pieces.
f (x)� f (a)	 f (x)� f

�
(x)� f

�
(x)� f

�
(a)� f

�
(a)� f (a)

so � f (x)� f (a) � � � f (x)� f
�
(x) � � � f

�
(x)� f

�
(a) �� � f

�
(a)� f (a) � .

For what reason must both � f (x)� f
�
(x) � and � f

�
(a)� f (a) � be less

than �
�

 for sufficiently large n?

Keeping to one of these sufficiently large ns, for what reason is it
possible to find a � such that � x� a ���� � f

�
(x)� f

�
(a) �� �

�

?

Now complete the proof.

21 We have proved that the uniform limit of a sequence of continuous
functions is continuous.
By considering qns 17(ii) and 19, show that the converse of this
theorem is false: namely that a non-uniform limit of a sequence of
continuous functions may also be continuous.

22 If ( f
�
) is a sequence of continuous functions which converges

uniformly to the function f, and a is a point in the domain of these
functions, justify each step of the following argument.

lim
���

lim
���

f
�
(x)	 lim

���

f
�
(a)

	 f (a)

	 lim
���

f (x)

	 lim
���

lim
���

f
�
(x).

23 Illustrate the dependence of the argument in qn 22 on uniform
convergence by showing how it would fail for the sequence of
functions in qn 3 if we were to take a	 0.
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Uniform convergence and integration

We have shown that the uniform limit of a sequence of continuous
functions is continuous. Because of qn 10.39 this allows us to claim in
certain cases that the uniform limit of a sequence of integrable functions
is integrable.

24 What further condition must the functions of qn 20 satisfy if their
integrability is to be claimed?
Even when the domain A of the functions in qn 20 is a closed
interval, it is still an open question as to whether the limit of the
integrals is equal to the integral of the limit function.
Use the inequality � � f

�
� � f � 	 � � ( f

�
� f ) �� � � f

�
� f � (from qn

10.35), to prove that

lim
���

� f�	� f, or lim
���

� f� 	� ( lim
���

f
�
).

We have shown that the limit of an integral is equal to the
integral of the limit in a context of uniform convergence but have
not shown that there was any need for uniform convergence for this
result.

25 Let f
�
(x)	 nx(1�x�)� on the domain [0, 1].

Verify that the pointwise limit function is the zero function
throughout this domain.

Prove that � f� 	 n/(2n� 2) on [0, 1] and deduce that

lim
���

� f��� lim
���

f
�
.

Is the convergence of the sequence ( f
�
) uniform? Use question 24.

Use computer software to draw the graphs of some functions from
this sequence.
What is lim

���
sup� � f

�
(x)� f (x) � : 0� x� 1�?

26 Show that the result of qn 24 may not be extended to improper
integrals by attempting to apply it to the sequence of functions
defined by

f
�
(x)	�

(n� �x � )/n�
0

when x � [�n, n],

otherwise.
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Determine the pointwise limit function of the sequence ( f
�
).

Prove that the convergence is uniform, and evaluate

� f� and � f on the domain R.

If we ask whether convergent sequences of integrable functions
which are not necessarily continuous must converge to an integrable
limit we would have part of an answer if we could construct a sequence
of integrable functions which converge to Dirichlet’s function given by

f (x)	�
1

0

when x is rational, and

when x is irrational,

since this is an example of a function which is not Riemann integrable
on any interval.

27 We construct a sequence of functions on the closed interval [a, b].
There is a countable infinity of rational numbers in this interval so
there is a sequence in [a, b], which we denote by x

�
,x

�
, x

�
, . . .,x

�
, . . .,

which contains them all.
On the closed interval [a, b] we define the function f

�
by

f
�
(x)	�

1

0

when x	 x
�
, x

�
, . . ., x

�
, and

otherwise.

Illustrate f
�
, f

�
and f

�
on a graph. Are these functions integrable? Is

every member of the sequence ( f
�
) integrable?

What is the pointwise limit function?

28 In qn 27, evaluate � f
�
(x

���
)� f (x

���
) � .

Determine whether the convergence of the sequence in qn 27 is
uniform.

Having found that the pointwise limit of integrable functions may
not be integrable, we now ask whether the uniform limit of a sequence
of integrable functions must be integrable.

29 On the domain [a, b] we let (f
�
) be a sequence of integrable

functions which tends uniformly to the function f. The condition of
uniform convergence, that for sufficiently large n, � f

�
(x)� f (x) � � 


�
,

for any positive 

�
, allows us to set an upper bound and a lower

bound on the function f, since f
�
(x)� 


�
� f (x)� f

�
(x)� 


�
, for all x.

Now for any subdivision of the domain whatsoever, show how an
upper sum for f

�
may be used to construct an upper sum for f.
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Likewise show how, for the same subdivision, the lower sum for f
�

may be used to construct a lower sum for f.
How close together can you be sure the upper and lower sums for f
must be? For given 
� 0, can you choose n sufficiently large to
make 2


�
(b� a)� �

�

?

And can you then choose a subdivision for which the difference
between the upper and lower sums for f

�
� �

�

? What then follows

about the difference between the upper and lower sums for f for this
subdivision of the domain [a, b]? Deduce that f is integrable on
[a, b].

30 If, on the domain [a, b], the sequence of integrable functions ( f
�
)

converges uniformly to the function f, use the argument of qn 24 to
prove that the limit as n�� of � f

�
is equal to � f.

31 Let ( f
�
) be a sequence of functions which are integrable on the

domain [a, b] and which converge uniformly. Use an argument like
that of qn 24 to prove that the sequence of functions (F

�
) defined

by F
�
(x)	 � �

�
f
�
is uniformly convergent on the domain [a, b].

Summary – Uniform convergence, continuity and integration

Definition ( f
�
) is a sequence of real functions, f

�
: A� R, all

qns 5, 6 of which have the same domain A. If for each
x �A, the limit lim

���
f
�
(x) exists, then a

function f: A� R may be defined by
f (x)	 lim

���
f
�
(x). This f is called the pointwise

limit function of the sequence ( f
�
).

Definition The sequence of functions, ( f
�
), has the pointwise

qns 14, 15 limit function f: A� R.
If (sup� � f

�
(x)� f (x) � : x �A�)� 0 as n��, we

say that the sequence ( f
�
) converges uniformly to

f.
Theorem If the sequence of functions ( f

�
) converges

qn 20 uniformly to the function f: A� R and each of
the functions f

�
is continuous on its domain A,

then f is continuous on A.
Theorem If the sequence of functions ( f

�
) converges

qns 29, 30 uniformly to the function f: [a,b]� R and each
of the functions f

�
is integrable on [a, b] then f is

integrable on [a, b] and lim
���

� 

�
f
�
	 � 


�
f.
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Uniform convergence and differentiation

32 Investigate the convergence of the sequence of functions defined by
f
�
(x)	x/(1� nx�) on R.

Prove that f �
�
(x)	

1� nx�

(1� nx�)�
.

If f is the pointwise limit function, show that
sup� � f

�
(x)� f (x) � x � R�	 1/2�n, and deduce that the convergence

is uniform.

Deduce that lim
���

f �
�
(0)� f �(0).

Is lim
���

� �
�
f
�
	 � �

�
f ? Use qn 24.

Question 32 shows that differentiability is less well behaved under
uniform convergence than is integrability.

33 Let f
�
(x)	 (cos nx)/n.

Find the pointwise limit function for the sequence ( f
�
) and

determine whether the convergence is uniform on R.
Determine the function f �

�
(x). Is there a pointwise limit function for

the sequence ( f �
�
)? Consider values of x� 0. Determine the value of

� �
�
f
�
. Is lim

���
� �
�
f
�
	 � �

�
lim

���
f
�
?

From qns 32 and 33 it is clear that, even when the sequence ( f
�
)

converges uniformly to f and every function f
�
is differentiable, the

sequence ( f �
�
) need not be convergent and when it is convergent it may

not be uniformly convergent. If we are to formulate a theorem about
the uniform convergence of a sequence of derivatives, the uniform
convergence of the sequence of derivatives will have to be assumed.
Then, if the functions under discussion are all continuous, the
Fundamental Theorem of Calculus may enable us to use the good
behaviour of integrals under uniform convergence to claim results
about derivatives.

34 We suppose that we have a sequence of differentiable functions ( f
�
)

on an interval [a, b] converging to the pointwise limit function f.
We further suppose

(a) that the sequence ( f �
�
) consists of continuous functions, and

(b) that the sequence ( f �
�
)�� uniformly.
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Give reasons for each of the following propositions.
(i) The function � is continuous.
(ii) Each function f �

�
and the function � are integrable on [a,b].

(iii) � �
�
� 	 lim

���

� �
�
f �
�
.

(iv) 	 lim
���

( f
�
(x)� f

�
(a))

(v) 	 f (x)� f (a).
(vi) � 	 f �
(vii) ( f

�
)� f uniformly on [a, b].

The conditions of qn 34 appear to be quite restrictive. But we need
to apply it, typically, to prove theorems about power series and, in this
case, when the functions concerned are polynomials, some of the
conditions we have used are obvious. One of the issues at stake is when
we may integrate or differentiate a power series term by term while still
guaranteeing its continuity or differentiability. Our theorems relating
integration and differentiation to uniform convergence will enable us to
decide this matter.

Uniform convergence of power series

A series of functions is said to be uniformly convergent when its
sequence of partial sums is uniformly convergent.

35 Let e
�
(x)	 1� x� x�/2!� . . .� x�/n!.

(i) Why is the sequence (e
�
(x)) convergent for each x?

We define e(x)	 lim
���

e
�
(x).

If �a�x� a, then � x�/n! � � a�/n!.
(ii) Prove that � e

���
(x)� e

�
(x) �� e

���
(a)� e

�
(a)

(iii) Let m�� in (ii) and prove that
� e(x)� e

�
(x) �� e(a)� e

�
(a) for all x in [�a,a].

(iv) Prove that (e
�
)� e uniformly on [�a, a].

(v) Use qn 20 to prove that the function e is continuous on
[�a,a].

(vi) Use qn 34 to prove that e�(x)	 e(x).

The earlier results of this chapter lead to the proof of the uniform
convergence of the sequence (e

�
) in qn 35 on the basis of the inequality

�x�/n! � � a�/n! and the convergence of � a�/n!. We isolate this claim in
the basic theorem about the uniform convergence of series.
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36 The Weierstrass M-test
We let f

�
(x)	� ���

���
u
�
(x) for x �A� R, and assume

(i) for each n, and for all x �A, there exists M
�
such that

� u
�
(x) ��M

�
, and

(ii) �M
�
is convergent.

We investigate the convergence of the sequence ( f
�
).

Explain why the series � u
�
(x) is absolutely convergent for all x �A.

Deduce that the sequence ( f
�
) is pointwise convergent to a function

f, say.
Prove that

�
�����

�
�����

u
�
(x) ��

�����
�

�����

M
�
,

and deduce that

� f
���

(x)� f
�
(x) � �

�����
�
���

M
�
�

���
�
���

M
�
,

so that, letting m��,

� f (x)� f
�
(x) � �

�
�
���

M
�
�

���
�
���

M
�
.

Now deduce that ( f
�
) converges uniformly.

37 Use the Weierstrass M-test to prove that each of the following
series is uniformly convergent on the domain given.

(i) �x�/n� on the domain [�1, 1],
(ii) � (sin nx)/2� on the domain R,
(iii) � 1/(n��x�) on the domain R,
(iv) �x/(x�� n�) on the domain [�a, a],
(v) � (x�� n)/(x�� n�) on the domain [�a, a],
(vi) � (n� 1)x� on the domain [�a, a], where 0� a� 1,
(vii) �x�(1�x)/n on the domain [0, 1].

38 Let f
�
(x)	 1�x�x� � . . .�x���.

For �1�x� 1, find the pointwise limit function f of the sequence
( f

�
).

For x in this range, prove that � f
�
(x)� f (x) �	 �x � �/(1� x).

Deduce that the convergence of the sequence (f
�
) is not uniform on

the domain (�1, 1).
Prove that the convergence of the sequence ( f

�
) is uniform on the

domain [�a, a], provided 0� a� 1.
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39 Prove that each of the following series is not uniformly convergent
on the domain given.

(i) � (x�� n)/(x�� n�) on the domain R,
(ii) � (n� 1)x� on the domain (�1, 1).

The heart of the proof lies in finding a value of x which shows that
the sum of the series from n to � cannot be made arbitrarily small
by choice of n, however large.
Compare these results with qn 37(v) and 37(vi).

It is in fact quite straightforward to show that any power series is
uniformly convergent within a closed interval inside its circle of
convergence. (Abel, 1827)

40 Suppose R is the radius of convergence of the power series � a
�
x�.

Show that if 0� a�R then the series is uniformly convergent on
the interval [�a, a] by choosing a real number r such that
a� r�R, and using the Weierstrass M-test with M

�
	 � a

�
r� � .

Deduce that the limit function must be continuous on this domain.

41 Use qn 24 to show that if a power series is integrated term by term
then the integral of the limit function is equal to the limit of the
power series obtained by term-by-term integration, on an interval
[0,x] inside its circle of convergence.
Is the radius of convergence of the integrated series the same as
the radius of convergence of the original power series? See
qn 5.107.

42 If a power series is differentiated term by term show that the radius
of convergence of the differentiated series is the same as the radius
of convergence of the original series. See qn 5.107. Use qn 34 to
show that the limit function is differentiable and that the derivative
of the limit function is equal to the limit of the power series
obtained by term-by-term differentiation, within a closed interval
inside its circle of convergence.

43 By differentiating the series for 1/(1� x) m times, establish the
binomial theorem for negative integral index.

44 By integrating the power series

1�x�x�� . . .� x�� . . .

321Uniform convergence of power series



within its circle of convergence, prove that

log(1� x)	�x�x�/2� . . .�x�/n� . . .

and determine the radius of convergence of this power series.

The Binomial Theorem for any real index

45 (Cauchy, 1821) A function f is defined for �1� x� 1, by

f (x)	
�
�
���
�
a

n�x�.
Here a is a real number which is neither zero nor a positive integer.
See qn 5.98. Prove that (1� x) f �(x)	 af (x).
Use the Mean Value Theorem to prove that the function g defined
on (�1, 1) by g(x)	 (1� x)��f (x) is constant. Since g(0)	 1, prove
that f (x)	 (1�x)�.

The blancmange function

A function which is continuous everywhere and differentiable
nowhere

46 (i) The saw-tooth function
Let f (x)	x� [x].
Define a real function s (the saw-tooth function) by

s(x)	 f (x),

s(x)	 1� f (x),

when f (x)� �
�
, and

when f (x)� �
�
.

The graph of s is shown on the interval [0, 2].

0.5 1 1.5 2

0.5

Check that f (x� 1)	 f (x), and that f (m)	 0 for any integer
m. Deduce that s(x� 1)	 s(x), and that s(m)	 0 for any
integer m.

(ii) The real functions s
�
, s

�
, s

�
are defined by s

�
(x)	 s(x),
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s
�
(x)	 �

�
s(2x) and s

�
(x)	 �



s(4x). The graphs of the functions

s
�
, s

�
and s

�
have been illustrated on [0, 2].

0.5 1 1.5 2

0.1
0.2
0.3
0.4
0.5

0.5 1 1.5 2

0.1
0.2
0.3
0.4
0.5

Notice that the graph of s
�
is a version of s, scaled down by a

factor 2 in both the x- and y-directions. Scaling down by a
factor k turns

y	 f (x) into ky	 f (kx) or y	
1

k
f (kx).

(iii) The graphs of s
�
� s

�
and s

�
� s

�
� s

�
have been illustrated

on [0, 2].

0.5 1 1.5 2

0.5

0.5 1 1.5 2

0.6

Since 0� f (x)� 1 for all x, deduce that 0� s(x)� �
�
, for all x.

Give an upper bound for s
�
� s

�
and for s

�
� s

�
� s

�
.

(iv) Is s continuous for all x? See qn 6.96, the continuity of
contiguous continuous functions. Define

s
�
(x)	

1

2���
s(2���x).

Is s
�
continuous for all n?

(v) The blancmange function
Show that � s

�
(x) �� �

�
� for all x, and deduce that the function

b defined by
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b(x)	
�
�
���

s
�
(x) is continuous for all x.

0.5 1 1.5 2

0.6

(vi) Verify that

b(x)	
���
�
���

s
�
(x)�

1

2�
b(2�x).

(Notice that
1

2�
b(2�x) is b transformed by scaling down by the

same proportion in both the x- and y-directions.)
(vii) Since s

�
is linear (a straight line) on an interval of the type

[m/2, (m� 1)/2], where m is an integer, state an interval on
which s

�
is linear. Must s

�
� s

�
be linear on this second

interval? Check that the function L
�
defined by

L
�
(x)	

���
�
���

s
�
(x)

is linear on the interval

	
m

2�
,
m� 1

2� 

for any integer m. Since b(m)	 0 for any integer m, deduce
that b(m/2�)	 L

�
(m/2�). (On this interval, the function b is a

scaled down version of the function on [m/2, (m� 1)/2] with a
linear factor L

�
(x) added, so the bending of b on the smaller

interval is like the bending of b on the wider interval.)
(viii) Prove that b(1/3)	 2/3.
(ix) To show that b is not differentiable at any point, a, we must

show that

b(x)� b(a)

x� a

does not have a limit as x tends to a, and we do this by
finding values of x, inside any neighbourhood of a for which
this gradient takes values separated by at least �

�
.

Let c be the least number in the interval (a, a� 1/2���] of the
form m/2�, where m is an integer. Then d	 (m� 1)/2� and
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k	 (m� 1/3)/2� are also in this interval.
a� c	m/2�� k� d	 (m� 1)/2�� a� 1/2���.
Check that b(c)	 L

�
(c), b(d)	 L

�
(d) and

b(k)	 L
�
(k)� 2/(3.2�), from (vii) and (viii).

(x) Let L be the linear (straight line) function which coincides
with L

�
on the interval

[c, d]		
m

2�
,
m� 1

2� 
 .
By definition

L(k)� L(a)

k� a
	

L(c)� L(a)

c� a
.

Use this to show that

b(k)� b(a)

k� a
�
b(c)� b(a)

c� a
�
b(k)� L(k)

k� a
,

provided b(a)� L(a). Show further that

b(k)� L(k)

k� a
�

(2/3)2��

(4/3)2��
	�

�
,

using (ix).
(xi) Use the notation in (x) to construct a similar proof in the case

L(a)� b(a).

Start with
L(k)� L(a)

k� a
	

L(d)� L(a)

d� a
.

Show that
b(k)� b(a)

k� a
�
b(d)� b(a)

c� a
�
b(k)� L(k)

k� a
,

and as before show that

b(k)� L(k)

k� a
�

(2/3)2��

(4/3)2��
	�

�
.

(xii) Use (x) and (xi) to show that in every neighbourhood of a,

b(x)� b(a)

x� a

takes values which differ by �
�
or more and therefore

b(x)� b(a)

x� a

cannot have a limit as x� a.
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The blancmange function is continuous everywhere and
differentiable nowhere. A self-similar function like the
blancmange function is equally bumpy on every interval.

Summary – Differentiation and the M-test

Theorem If
qn 34 (i) the sequence of functions ( f

�
) converges

pointwise to the function f: A� R;
(ii) each of the functions f

�
has a continuous

derivative on its domain A;
(iii) the sequence ( f �

�
) converges uniformly to

�: A� R;
then �	 f � and ( f

�
) converges uniformly to

f on A.
The Weierstrass M-test

qn 36 A sequence of functions ( f
�
) is defined by the

partial sums of a series:

f
�
(x)	

���
�
���

u
�
(x).

If there exist real numbers M
�
such that

(i) � u
�
(x) ��M

�
, and

(ii) �M
�
is convergent,

then ( f
�
) is uniformly convergent.

Theorem A power series is uniformly convergent on any
qn 40 closed interval inside its circle of convergence.

Theorem If f (x)	� �
���
a
�
x� has radius of convergence R,

qns 41, 42 then

f �(x)	
�
�
���

na
�
x��� and �

�

�

f	
�
�
���

a
�
x���

n� 1
when � x � �R.

The Binomial Theorem

qn 45 (1�x)�	
�
�
���
�
a

n� x�, for all real a,

provided �1�x� 1.

Historical note

Newton and his contemporaries differentiated and integrated power
series, term by term, without reference to their circle of convergence.
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During the eighteenth century it was presumed that the limit of a
sequence of continuous functions was continuous. In 1821, Cauchy
believed that he had a proof of this and in 1823 a proof that a sequence
of integrable functions was integrable. However, he had not identified
the distinctive features of uniform convergence and his proofs were
fallacious. This was pointed out by Abel (1826) using an example due to
Fourier. Abel showed that a power series was uniformly convergent
inside its radius of convergence and showed that this convergence
implied the continuity of the limit. When Abel reflected on why the
results in analysis obtained before Cauchy were generally sound, despite
the lack of precision relating to limiting processes, he suggested that the
reason might be that the functions considered were expressible as power
series. In the same paper, Abel proved the binomial theorem for
complex numbers, stimulated by a paper by Bolzano (1816) which
exposed the flaws in earlier treatments and Cauchy’s treatment for real
index (1821). In 1848 Seidel correctly analysed the defect in Cauchy’s
proofs, but his discussion of uniform convergence was clumsy by
comparison with that of Weierstrass in his lectures in Berlin in the
1860s, to whom we owe the theorems of this chapter. Weierstrass was
able to prove that every continuous function was the uniform limit of a
sequence of polynomials and believed that this theorem legitimated the
study of continuous but non-differentiable functions which he had
initiated after Riemann’s definition of the integral.
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Answers

1 lim
���

1/(n�� x�)	 0 for all x.

3 f (0)	 1, f (x)	 0 when x� 0.

4 f (x)	 0 when 0� x� 1, f (1)	 1.

5 f (x)	�1 when 0� x� 1, f (1)	 0, f (x)	 1 when 1�x.

6 Not possible with qns 1 or 2.

Question 3 (i) x� � 1/10�, (ii) x�� 1/100�.

Question 4 (i) 1/���2�x� 1, (ii) 1/����2�x� 1.

Question 5 (i) 1/���3�x� 1 or 1�x� ���3,
Question 5 (ii) 1/����3�x� 1 or 1�x� ����3.

7 1/(n��x�)� 1/n�.

8 � (sin x)/n � � 1/n.

9 0� �x � � 1/n.

10 ��(0.99)� x� 1.

11 1/ ��3� x� 1 or 1�x� ��3.

12 f
�
(x)� 1 as x� 0, so

� f
�
(x)� f (x) � � 1	 sup� � f

�
(x)� f (x) � : x � R�.

13 f
�
(x)� 1 as x� 1�, so

� f
�
(x)� f (x) � � 1	 sup� � f

�
(x)� f (x) � : 0�x� 1�.

14 f
�
(x)� 0 as x� 1�, so

� f
�
(x)� f (x) � � 1	 sup� � f

�
(x)� f (x) � : 0�x� 1�.

f
�
(x)� 0 as x� 1�, so

� f
�
(x)� f (x) � � 1	 sup� � f

�
(x)� f (x) � : 1�x�.

17 The pointwise limit function is f (x)	 0 whatever the domain.
(i) On [�a, a], � f

�
(x)� f (x) � � � a � /n� 0 as n��.

(ii) For given n, � f
�
(x)� f (x) � is unbounded for x � R.
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The critical question is whether you can use n to control the greatest
values of � f

�
(x)� f (x) � .

18 (i) On [0, a], � f
�
(x)� f (x) �� a� � 0 as n��.

(ii) On [0, 1), f
�
(x)� 1 as x� 1�, so

� f
�
(x)� f (x) � � 1	 sup� � f

�
(x)� f (x) � : 0�x� 1�.

This is a tricky and uncomfortable example, but it shows what a subtle
business uniform convergence may be.

19 The pointwise limit function is given by f (x)	 0.
sup� � f

�
(x)� f (x) � : x � R�	�

�
irrespective of n.

20 By the uniform convergence of ( f
�
)� f,

(sup� � f
�
(x)� f (x) � : x �A�)� 0 as n��.

So for some N, � f (x)� f
�
(x) � and � f

�
(a)� f (a) �� �

�

 for n�N.

Since each f
�
is continuous a suitable � may be found.

Now, if �x� a ���, � f (x)� f (a) �� 
 since we know the three inequalities
hold for some value of n. Thus lim

���
f (x)	 f (a), and f is continuous at a.

22 First equality by continuity of f
�
at a.

Second equality by definition of pointwise limit function.
Third equality by uniform convergence and qn 20.
Fourth equality by definition of pointwise limit function.

23 In qn 3,

lim

���

lim

���

f
�
(x)	 lim

���

1	 1.

lim

���

lim

���

f
�
(x)	 lim

���

0	 0.

24 A	 [a, b]. For sufficiently large n, � f
�
� f � � 
,

So � � f
�
� f �� 
(b� a). Use qn 10.35.

25 lim

���

� �
�
f 	�

�
. � �

�
lim

���

f
�
	 0. f �

�
(1/�(2n� 1))	 0.

sup� � f
�
(x)� f (x) � : 0�x� 1�	

n

�(1� 2n) · (1� 1/(2n))�
��

as n��.

26 The pointwise limit function is given by f (x)	 0. � f
�
	 1. � f	 0.

27 The function f
�
is integrable as in qn 10.14. The pointwise limit function is

Dirichlet’s function, qn 6.20.
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28 � f
�
(x

���
)� f (x

���
) � 	 1. Convergence not uniform.

29 Let S
�
be an upper sum for f

�
. Then S

�
� 


�
(b� a) is an upper sum for f.

Let s
�
be a lower sum for f

�
. Then s

�
� 


�
(b� a) is a lower sum for f. It is

possible to take n sufficiently large so that 

�
� 
/4(b� a). Since f

�
is

integrable there are upper and lower sums such that S
�
� s

�
� �

�

 from

10.23. Then (S
�
� 


�
(b� a))� (s

�
� 


�
(b� a))�
.

So f is integrable by qn 10.24.

30 The argument in qn 24 does not appeal to continuity.

31 Let ( f
�
)� f, then by qn 30,

lim

���

F
�
(x)	 � �

�
lim

���

f
�
	 � �

�
f	F(x) (say).

F
�
(x)�F(x)	 � �

�
( f

�
� f ) and, by qn 10.35,

�F
�
(x)�F(x) � � � �

�
� f

�
� f � .

If n�N� sup� � f
�
(x)� f (x) � : a�x� b� �
/(b� a), then

n�N� �F
�
(x)�F(x) �� 
.

32 The pointwise limit function is given by f (x)	 0.
f �
�
(0)	 1, f �(0)	 0. Yes.

33 f (x)	 0. � f
�
(x)� f (x) �� 1/n, so convergence is uniform.

f �
�
(x)	�sin nx which is not pointwise convergent for any x� 0.

� �
�
f
�
	 (sin nx)/n�. Limit of integral	 integral of limit by qn 30.

34 (i) Question 20, (ii) qn 10.39, (iii) qn 24, (iv) qn 10.51, (v) qn 3.54(v), the
difference rule, (vi) Fundamental Theorem of Calculus, qn 10.54, (vii) qns
24 and 31.

35 (i) Question 5.86.
(ii) � e

���
(x)� e

�
(x) � 	 �x���/(n� 1)!� . . .� x���/(n�m)! �

� �x���/(n� 1)! �� . . .� �x���/(n�m)! �
� a���/(n� 1)!� . . .� a���/(n�m)!
� e

���
(a)� e

�
(a).

(iii) Question 3.76, the inequality rule.
(iv) (e(a)� e

�
(a))� 0 as n��.

(vi) let f
�
	 e

�
, then f �

�
	 e

���
. ( f �

�
)� e uniformly and ( f

�
)� e uniformly.

From qn 34(vi), e	 e�.

36 � u
�
is absolutely convergent by (i), (ii) and the first comparison test, qn

5.26. So by qn 5.67 (absolute convergence) the series is convergent for all
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x �A and f is well defined. The inequality with m terms is obtained by
repeated application of the triangle inequality (qn 2.61), the second
inequality is only a rewrite of the first, and the third inequality comes from
qn 3.76, the inequality rule. As N� � the right-hand side of the last
inequality tends to 0; see qn 5.17.

37 (i) Take M
�
	 1/n�, (ii) M

�
	 (�

�
)�, (iii) M

�
	 1/n�, (iv) M

�
	 a/n�,

(v) M
�
	 1/n�� a�/n�, (vi) M

�
	 (n� 1)a� using Cauchy’s nth root test, qn

5.35, or d’Alembert 5.43, (vii) M
�
	 1/2n� using differentiation and qn 2.45.

38 f (x)	 1/(1�x). As x� 1�, � f
�
(x)� f (x) ���.

If �a� x� a� 1, �x� �� a� 	M
�
.

39 (i) When x	 n�, there is a term in the series, after the nth, which is
greater than �

�
. So although the series is convergent for each value of

x by comparison with � 1/n�, the greatest difference between the nth
partial sum (i.e. f

�
) and the limit function is not null.

(ii) Likewise when x	 1/���(2n), there is a term in the series, after the
nth, which is greater than 1. So although the series is convergent for
each value of x in (�1, 1), the greatest difference between the nth
partial sum and the limit function is greater than 1.

40 The limit function is continuous by qn 20.

41 A partial sum of a power series is a polynomial which is continuous. The
uniform convergence of the series on [0,x] gives the limit of the integral
equal to the integral of the limit from qn 24.
The radius of convergence of the two series is the same by qn 5.107.

42 Partial sums are polynomials, so derivatives of partial sums are also
polynomials. Both series have the same circle of convergence by qn 5.107
so, within that circle, both converge uniformly. This is the context in which
qn 34(vi) may be applied.

43 (1�x)��	 1�x�x�� . . .�x�� . . .

	 1��
�1

1� (�x)��
�1

2� (�x)�� . . .��
�1

n� (�x)�� . . .

	
�
�
���
�
�1

n� (�x)�.

The radius of convergence 	 1.

Suppose (1�x)��	
�
�
���
�
�m

n � (�x)�.
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Then m(1� x)����	
�
�
���

� (n� 1)�
�m

n� 1� (�x)�

and hence (1�x)���� 	
�
�
���

�
n� 1

m �
�m

n� 1� (�x)�

thus (1�x)���� 	
�
�
���
�
�m�1

n � (�x)�.

This establishes the result by induction.

44 Radius of convergence for both series �x �	 1 by qn 5.107.

45 By qn 5.98, the series is convergent for �x � � 1, so f is a pointwise limit
function. Within the circle of convergence the convergence is uniform (qn
40) so, using qn 42,

f �(x)	
�
�
���

(n� 1)�
a

n� 1�x�.

Now n
a(a� 1) . . . (a� n� 1)

n!
� (n� 1)

a(a� 1) . . . (a� n)

(n� 1)!

	
a(a� 1) . . . (a� n� 1)

(n� 1)! �1�
a� n

n � .
So (x� 1) f �(x)	 af (x).
g�(x)	�a(1� x)����f (x)� (1� x)��f �(x)
g�(x)	 (1�x)����(�af (x)� (1� x) f �(x))
g�(x)	 0.

By the Mean Value Theorem (qn 9.17) g is a constant function.
Since f (0)	 1, g(0)	 1, so f (x)	 (1�x)�.

46 (i) [x� 1]	 [x]� 1, so f (x)	 f (x� 1). [m]	m.
0� f (x)� 1.

(ii) s
�
and s

�
are half and quarter-sized versions of s.

(iii) When �
�
� f (x)� 1, 0� 1� f (x)� �

�
. s

�
(x)� s

�
(x)� 3/4,

s
�
(x)� s

�
(x)� s

�
(x)� 7/8; though these are not least upper bounds.

(iv) s is linear on segments and contiguous, so s is continuous for all x.
Now the composite of two continuous functions and a scalar
multiple gives the continuity of s

�
.

(v) s
�
(x)	 (1/2���)s(2���x)� 1/2�. b is uniformly convergent by the

Weierstrass M-test, and continuous since the components are
continuous.

(vi) b(2�x)	
�
�
���

s
�
(2�x)	

�
�
���

s(2��� · 2�x)

2���
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	2�
�
�
���

s(2�����x)

2�����
	 2��

�
�
���

s
�
(x)�

���
�
���

s
�
(x)� .

(vii) s
�
is linear on intervals [m/2, (m� 1)/2] for any integer m.

s
�
is linear on intervals [m/4, (m� 1)/4] for any integer m.

s
�
is linear on intervals [m/2�, (m� 1)/2�] for any integer m.

(viii) s(1/3)	 1/3. s
�
(1/3)	 (1/2���)s(2���/3)	 1/(2���/3).

b(1/3)	 1/3� (1/3)(1/2)� (1/3)(1/4)� . . .
(ix) b(c)	 L

�
(c) and b(d)	 L

�
(d) from (vii).

b(k)	 L
�
(k)� (1/2�)b(2�(m� 1/3)/2�)	 L

�
(k)� (1/2�)b(1/3). Now use

(viii).
(x) Consider

�
b(k)� b(a)

k� a
�
b(c)� b(a)

c� a ���
L(k)� L(a)

k� a
�

L(c)� L(a)

c� a �
	�

b(k)� L(k)

k� a �� (b(a)� L(a))�
1

c� a
�

1

k� a� .
Also, 0� k� a� (1� 1/3)/2�.

(xi) Like (x).
(xii) Every neighbourhood of a contains an interval of the form

(a, a� 1/2���] and therefore points corresponding to c, k and d as in
(ix), (x) and (xi). So there can be no limit g such that

�
b(x)� b(a)

x� a
� g ��

1

5
,

for all x inside any neighbourhood of a.
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Appendix 1

Properties of the real numbers

Algebraic properties of a field of numbers – chapter 1 onwards

If a, b, and c are numbers, then
a� b is a number; a · b is a number;
a� b	 b� a; a · b	 b · a;
a� (b� c)	 (a� b)� c; a · (b · c)	 (a · b) · c;
there is a number 0 such that there is a number 1� 0, such that
a� 0	 a, for all a; a · 1	 a, for all a� 0;

for each a there is a number �a for each a� 0, there is a number 1/a
such that a� (�a)	 0; such that a · (1/a)	 1;

a� (�b) is usually written a� b; a · (1/b) is usually written a/b;
a · (b� c)	 a · b� a · c.

From these algebraic properties it follows that �(�a)	 a, 1/(1/a)	 a,
a · 0	 0, (�a) · (�b)	 a · b and also a · b	 0 only when a	 0 or b	 0.

While these algebraic properties hold for the rational numbers, Q,
the real numbers, R, the complex numbers, C, and some finite systems
such as arithmetic modulo 2, Z

�
, or modulo 3, Z

�
, they do not hold

universally for the number system on a pocket calculator. Let a	�b
where a is as large a number as your calculator will show, then if c is as
small a number as you can key in, the machine will calculate
a� (b� c) as 0, and (a� b)� c as c.

Order properties of a field of numbers – chapter 2 onwards

The trichotomy law If a is a number, then either a	 0, or a is
positive or �a is positive, and only one of these is true. When �a is
positive, a is said to be negative.
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Positive closure under addition The sum of two positive numbers is
positive.
Positive closure under multiplication The product of two positive
numbers is positive.
Definition of ‘less than’. We say a� b if and only if b� a is positive.

A field of numbers with order properties has to contain the positive
numbers 1, 1� 1, 1� 1� 1, 1� 1� 1� 1, etc. as an increasing
sequence and so it must be infinite and contain versions of N, Z and Q.
A field of numbers with order properties can be modelled by an
indefinitely long line. The numbers are then matched with a dense set of
points on the line. Because squares cannot be negative (qn 2.15) the
complex numbers C do not have the properties of order.

Property of Archimedean order – chapter 3 onwards

Every number is exceeded by integer.
If all the numbers are marked on a line, and the integers are

marked as a special row of pegs, then the property of Archimedean
order says every number lies between two pegs. This rules out both
infinite numbers and infinitesimal numbers both of which can be
tolerated in a ‘non-standard’ number system. An equivalent property
which is given in many texts, is that if two positive numbers a and b are
given, then some multiple of the first will exceed the second, b� na. Yet
another equivalent property, due to Euclid, is that if from a quantity, a
half or more is removed, and then from what is left, half or more is
removed, and so on, then at some stage, what is left will be less than
any given quantity, however small.

Principle of completeness – chapter 4 onwards

Every infinite decimal sequence is convergent.
The property of Archimedean order implies that every number is

the limit of an infinite decimal sequence. The rational numbers are the
limits of terminating or recurring decimals, and the rational numbers
form an Archimedean ordered field. But there are points on a line not
corresponding to rational numbers. The completeness principle is
adopted so that the real number system matches precisely the points on
a line.

Propositions equivalent to completeness in the context of
Archimedean order are
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I. Every bounded monotonic sequence of real numbers is convergent.
II. The intersection of a set of nested closed intervals is not empty.
III. Every bounded sequence of real numbers has a convergent

subsequence.
IV. Every infinite bounded set of real numbers has a cluster point.
V. Every Cauchy sequence of real numbers is convergent.
VI. Every non-empty set of real numbers which is bounded above has a

least upper bound.

Of these propositions, I, III, IV and VI are sufficient to imply
Archimedean Order in an ordered field. In Appendix 3, qn 10 sets up
the non-Archimedean ordered field of Laurent series, in which Cauchy
sequences converge.

It is with completeness that we can prove the Intermediate Value
Theorem, and can guarantee the existence of nth roots, logarithms,
exponentials and trigonometric functions.
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Appendix 2

Geometry and intuition

Sometimes authors and lecturers on analysis insist that students must
not use geometrical intuition in developing the fundamental concepts of
analysis or in constructing proofs in analysis. Such a prohibition
appears to be consonant with Felix Klein’s description in 1895 of the
developments due to Weierstrass, Cantor and Dedekind, namely the
Arithmetisation of Analysis.

However, such advice is impossible to implement and is in any case
untrue to the origins of the subject. We can hardly conceive of a
Dedekind cut, for example, without imagining a ‘real line’, and such
imagining was certainly part of Dedekind’s own thought. We have eyes,
and we have imaginations with which to visualise, and such
visualisation is central to much of the development of analysis. Every
development of the real number system is a way of formalising our
intuitions of the points on an endless straight line. We cannot conceive
how the theory of real functions could have developed had there been
no graphs drawn.

However, geometric intuition is not always reliable, and knowing
when it should be trusted and when it should not is part of the
mathematical maturity which should develop during an analysis course.

There are contexts in which geometrical intuition is misleading.

1 When comparing infinities: because there is a one-to-one
correspondence between the points of the segment [0, 1] and the
points on the segment [0, 2], there appear to be the ‘same’ number
of points on both segments. The conflict with intuition here is
simply to do with infinity, not to do with rationals and irrationals,
because the same paradox arises if we restrict our attention to
rational points.

2 When comparing denseness with completeness: because there is an
infinity of rationals between any two points on the line there are
rationals as close as we like to any point. That most of the cluster
points of Q are not in Q again seems paradoxical. Even the
terminating decimals are dense on the line and will give us
measurements as accurate as we may wish, yet they do not even
include all the rational numbers.
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3 Continuity: when using a pencil to make a ‘continuous’ line the
Intermediate Value Theorem appears to be unfalsifiable. This is
closely related to the denseness—completeness issue in 2.

4 What a continuous function may be like is not obvious. A function
may be constructed, somewhat unexpectedly, from the segment
[0, 1] onto the unit square �(x, y)�0	 x	 1, 0	 y	 1�
constructed by mapping the number 0.a

�
a
�
a
�
a


a
�
a
�
. . . to the

point (0.a
�
a
�
a
�
. . ., 0.a

�
a


a
�
. . . ).

This function is well defined provided terminating decimals in
[0, 1] are always represented by recurring 9s. The function is
continuous and one-to-one except where one of the image
coordinates terminates.

5 The connection between continuity and differentiability seems
straightforward enough (with non-differentiability at the occasional
sharp point on the curve) until one considers a function which is
everywhere continuous and nowhere differentiable, such as David
Tall’s Blancmange Function in qn 12.46.

The examples 2—5 above all show the inadequacy of considering a mark
made by a pencil, without lifting it from the paper, as the illustrative
model of the graph of a continuous function. It is tantalising to contrast
these illustrations of suspect visualisation with an example where the
intuitive, pencil and paper, point of view is sound enough, as at the
beginning of chapter 7. Try finding the kind of set A which can be the
range of a continuous function R �A� R. Here even quite rough work
with pencil and paper leads to a precise and accurate formulation.

I would certainly concur with the judgement of J. E. Littlewood
who wrote in 1953 (Bollobás, 1986, p. 54):

My pupils will not use pictures, even unofficially and when
there is no question of expense. This practice is increasing.
I have lately discovered that it has existed for 30 years or
more, and also why. A heavy warning used to be given
that pictures are not rigorous; this has never had its bluff
called and has permanently frightened its victims into
playing for safety. Some pictures, of course, are not
rigorous, but I should say most are (and I use them
wherever possible myself ). An obviously legitimate case is
to use a graph to define an awkward function (e.g.
behaving differently in successive stretches).
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Appendix 3

Questions for student investigation and discussion

Multiple-choice questions for student discussion

1 a�� b� � c�� bc� ca� ab is true:
A. always; B. sometimes; C. never.

2 If (a
�
)� a, must ((� a

�
)/n)� a? A. Yes B. No

If ((� a
�
)/n)� a, must (a

�
)� a? A. Yes B. No

3 The sequence (a
�
) is bounded. Which of the following propositions

are sufficient to guarantee its convergence?

(i) (a
�
)� 0;

(ii) (a
�
) is positive and bounded below;

(iii) (a
�
) is bounded above and increasing;

(iv) for all n, a�
�
� a

�
;

(v) none of the above.

4 Between two rationals there is an irrational. Between two
irrationals there is a rational. So the rationals and the irrationals
alternate on the line.

A. This is a valid argument.
B. The result is true but the argument is invalid.
C. The result is false.

5 True or false?
Whatever the values of a or b, the set [a, b]� Q contains its own
supremum and infimum.
Whatever the values of a or b, the set (a, b)� Q never contains its
own supremum or infimum.
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6 A real function f is continuous on (0, 1) and takes positive values.
Which one of the following statements must be true?

(i) f is bounded on (0, 1);
(ii) f (x) tends to a non-negative limit as x� 0�;
(iii) f attains a minimum though not necessarily a maximum,

value;

(iv) the Riemann integral �
�

�

f exists;

(v) none of the four above.

7 A real function f is continuous on the open interval (0, 1).

(i) If f is uniformly continuous, must f be bounded?
(ii) If f is bounded, must f be uniformly continuous?
(iii) May f be neither bounded, nor uniformly continuous?

8 A differentiable function f: R � R is strictly monotonic increasing.
Must its derivative be positive?

Problems for corporate or individual investigation

9 In many books Archimedean order is claimed by saying that, if two
positive numbers are given, then some positive integer multiple of
the first exceeds the second. Is this claim equivalent to the Property
of Archimedean order which we have used in chapter 3?

10 On the set of formal power series
�
�

����

a
�
x� for some

integer m, and a
�
� R, can you construct �, � and � so that the

set is an ordered field?
You will need to take x� �x� 1� 1/x� 1/x�. Is the field then
Archimedean ordered?
Must Cauchy sequences converge?

11 Find the cluster points of the bounded sets
(i) �sin n �n � N�, (ii) �n�2� [n�2] � n � N�. Is there a subsequence of
(sin n) which tends to 0? If so, can you find one?

12 Does ( �� � sin n � ) have a limit?
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13 Can you give meaning to the following:

(i) 1�
1

2�
1

3�
1

4� . . .

,

(ii) �(1� �(2��(3� . . .))),
(iii) 2�2, 4�(2� �2), 8�(2� �(2��2)),

16�(2��(2��(2��2))), . . .

14 (Cauchy, 1821) If for a sequence of positive terms (a
���

/a
�
)� k,

prove that ( ��a
�
)� k. What about the converse?

15 (Cantor, 1874) A real number is said to be algebraic if it is the
solution of a polynomial equation with integer coefficients:
a
�
� a

�
x� a

�
x� � . . .� a

�
x� 	 0.

Calling � a
�
� � � a

�
� � � a

�
� . . .� � a

�
�� n, the ‘weight’ of the

polynomial show that the set of algebraic numbers is countable. A
real number which is not algebraic is said to be transcendental.

16 Does a real sequence (a
�
) necessarily converge if, given 
� 0, there

exists an integer N (depending on p and 
), such that
� a

���
� a

�
�� 
 when n�N, for each integer p?

17 Is there a non-empty set of real numbers which is both closed
(contains all its limit points) and open (contains a neighbourhood
of each of its points)?

18 Under what circumstances does

lim
���

(�(ax�� bx� c)��(Ax��Bx�C))

exist?

19 (Pringsheim, 1899) Find the values of the function f defined by

f (x)	 lim
���

lim
���

(cos n!�x)��.

20 If a, b, c and d are irrational numbers with a� b and c� d, can
you construct a bijection with domain [a,b]� Q and range
[c, d]� Q? A continuous bijection? A differentiable bijection?
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21 Let a
�
� a

�
� a

�
� . . .� a

�
.

A function f: [a
�
, a

�
]� R is defined by

f (x)	 � x� a
�
� � � x� a

�
� � . . .� � x� a

�
� . Is f continuous? Is f

bounded? Where does it attain its bounds?
A function g:[a

�
, a

�
]� R is defined by

g(x)	 (x� a
�
)�� (x� a

�
)�� . . .� (x� a

�
)�. Is g continuous? Is g

bounded? Where does it attain its bounds?

22 The waterfall function
If the function f: [a, b]� R is continuous at every point of its
domain, must the function g: [a, b]� R defined by
g(t)	 sup� f (x) � a�x� t� be continuous at every point?

23 A function f is defined on [a, b]. x
�
	 a� i(b� a)/n. Under what

conditions will the sequence with nth term (� ���
���

f (x
�
))/n be

convergent as n��?

24 (Newton—Raphson) Under what circumstances will a sequence (a
�
)

defined by the relation a
���

	 a
�
� f (a

�
)/f �(a

�
) converge? Try

applying the Second Mean Value Theorem.

25 (Cauchy, 1821) What properties can be established for a function
f: R � R such that f (x� y)	 f (x) · f (y)? What further properties can
you claim if f is continuous with f (1)	 2?

26 For each of the following functions f: (0, 1]� R, determine whether

(i) lim
����

f (x) exists, (ii) whether f can be extended to a continuous

function at 0, (iii) whether f can be extended to a differentiable
function at 0.

f (x)	 x[1/x], x�[1/x], x[1/x�] and x�[1/x�].
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scalar multiple of 10.26
step functions 10.12—5
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upper 10.18—22
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Méray 4H
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pointwise limit function 12.5�
Pólya 5.27
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power series

circle of convergence 5.94�
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App.1
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5H
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Rolle’s Theorem 9.1—8, 9H
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Schwarz 9H
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Seidel 12H
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lower 10.16
upper 10.18

subsequence 3.8—16
convergent 4.43—6
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and see least upper bound

surjection 6.2�

Tagaki 8.22�
Tall 8.22�, App.2
tangent function defined 11.59—62
tangents 8.1—4
Taylor’s Theorem 8H, 9H

integral form of remainder 10.59, 10H

with Cauchy’s remainder 9.45—6,
10.59

with Lagrange’s remainder 9.35, 42�
Thomae 6.72, 10.36, 10H, 11H
Torricelli 10H
transitive law, for order 2.9
triangle inequality 2.61—2, 64

reverse 2.63
trichotomy law, for order 2.1�, 7, App.1
trigonometric functions 11.39—62, App.1
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integrability 12.24—31
of power series 12.35—42

upper bound 3.5, 4.59—61
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